
NASA/TM-2002-211632

Fly-By-Light/Power-By-Wire

Fiber-Optic Backplane

Mahyar R. Malekpour

Langley Research Center, Hampton, Virginia

Fault-Tolerant

April 2002

The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated to the

advancement of aeronautics and space science. The

NASA Scientific and Technical Information (STI)

Program Office plays a key part in helping NASA

maintain this important role.

CONFERENCE PUBLICATION.

Collected papers from scientific and

technical conferences, symposia,

seminars, or other meetings sponsored or

co-sponsored by NASA.

The NASA STI Program Office is operated by

Langley Research Center, the lead center for NASA's
scientific and technical information. The NASA STI

Program Office provides access to the NASA STI

Database, the largest collection of aeronautical and

space science STI in the world. The Program Office
is also NASA's institutional mechanism for

disseminating the results of its research and

development activities. These results are

published by NASA in the NASA STI Report

Series, which includes the following report

types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results

of NASA programs and include extensive

data or theoretical analysis. Includes compilations

of significant scientific and technical data and

information deemed to be of continuing reference

value. NASA counterpart of peer-reviewed formal

professional papers, but having less stringent

limitations on manuscript length and extent of

graphic presentations.

TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain
minimal annotation. Does not contain

extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to
NASA's mission.

Specialized services that complement the

STI Program Office's diverse offerings include

creating custom thesauri, building customized

databases, organizing and publishing

research results.., even providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home

Page at http://www.sti.nasa.gov

• Email your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI

Help Desk at (301) 621-0134

• Telephone the NASA STI Help Desk at

(301) 621-0390

Write to:

NASA STI Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076-1320

NASA/TM-2002-211632

Fly-By-Light/Power-By-Wire

Fiber-Optic Backplane

Mahyar R. Malekpour

Langley Research Center, Hampton, Virginia

Fault-Tolerant

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

April 2002

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an

official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and

Space Administration.

Available from:

NASA Center for AeroSpace Information (CAS1)

7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171

(703) 605-6000

Abstract

The design and development of a fault-tolerant fiber-optic backplane

to demonstrate feasibility of such architecture is presented. The

simulation results of test cases on the backplane in the advent of induced

faults are presented, and the fault recovery capability of the architecture

is demonstrated. The architecture was designed, developed, and

implemented using the Very High Speed Integrated Circuits (VHSIC)

Hardware Description Language (VHDL). The architecture was

synthesized and implemented in hardware using Field Programmable

Gate Arrays (FPGA) on multiple prototype boards.

111

Acknowledgments

I would like to acknowledge my gratitude to Dr. Jerry H. Tucker of NASA Langley Research

Center for his guidance during the development process. I would like to acknowledge my appreciation to

Dr. Celeste M. Belcastro of NASA Langley Research Center for her recommendations. I would also like

to acknowledge my appreciation to Dr. Paul S. Miner of NASA Langley Research Center for his helpful

comments in earlier version of this report. Lastly, I would like to acknowledge my appreciation to

Wilfredo Torres-Pomales of NASA Langley Research Center for his review and helpful comments of the

final version of this report.

iv

Table of Contents

Acknowledgments ... iv
Table of Contents .. v

List of Figures .. vi

Acronyms ... vii
1. Introduction ... 1

2. Design and Development ... 3
2.1 BIU/RMU .. 4

2.2 Packet Formats ... 6

2.3 Performance ... 8

2.4 Reporting Errors ... 10

2.5 Housekeeping ... 10

2.6 Input Data .. 11

2.7 Output Data .. 13

2.8 System Timers .. 13
2.9 FIFO .. 14

2.10 EPROM .. 14

2.11 Schedule Format ... 15

2.12 Schedule Controller .. 16

2.13 BIU Testbench ... 17

2.14 RMU Testbench ... 17

2.15 Microprocessor (PC) .. 18

2.16 Fault Injection .. 19

2.17 Fault Recovery ... 20

2.18 Reporting Faults ... 20

3. Hardware Development .. 21
3.1 PAL ... 21

3.2 Address Assignment ... 22

3.3 XC3020 and Microprocessor Interface ... 22

3.4 Programming XC4005A and Testing FIFOs ... 22
4. Simulation Results and Test Cases ... 23

4.1 Ideal Case ... 23

4.2 Failing a BIU .. 26

5. Summary .. 29
5.1 Future Enhancements ... 29

References .. 30

Appendix A .. 31

Appendix B ... 91

Appendix C ... 98

Appendix D .. 102

Appendix E ... 103

List of Figures

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1. Fiber-Optic channel ... 1

2. Fiber-Optic backplane ... 2

3. Global clock, fiber-optic channel ... 4

4. BIU/RMU functional descriptions ... 5
5. Packet formats ... 7

6. Channel read bus bandwidth efficiency as a function of packet size 9

7. Status_Reg_0, error bit assignments .. 10

8. Power on/reset operations .. 11

9. Incoming-packet controller .. 12

10. Outgoing-packet controller .. 13
11. Schedule format for EPROM/RAM ... 15

12. BIU testbench .. 17

13. RMU testbench ... 18

14. Microprocessor operations .. 19

15. Typical scheduled activities ... 23
16. Ideal conditions ... 24

17. Ideal conditions, BIUs and RMU are in perfect synchrony 25

18. Start-Cycle command, BIU clocks are re-synchronized with the RMU clock 26

19. BIU 1 is powered down for one cycles .. 27

20. BIU 1 is powered down (detail) ... 28

21. BIU 1 recovers, Start-Cycle command ... 28

vi

Acronyms

ASIC

BIU

RMU

MUX

VHSIC

VHDL

FPGA

EPROM

RAM

FIFO

FBL/PBW

PLL

DPLL

Mbps

Application Specific Integrated Circuit

Bus Interface Unit

Redundancy Management Unit

Multiplexer

Very High Speed Integrated Circuit

VHSIC Hardware Description Language

Field Programmable Gate Array

Electrically Programmable Read Only Memory

Random Access Memory

First In First Out

Fly-By-Light/Power-By-Wire

Phase Locked Loop (Analog)

Digital Phase Locked Loop

Mega bits per second

The use of brand names is for completeness and does not imply endorsement by US government.

vii

1. Introduction

Thepurposeof thisprojectis to developanarchitecturecapableof implementingthefault-
tolerant,fiber-opticbackplaneproposedbyPalumboin [1]. Thedevelopmentof thisarchitectureis also
intendedtoassistwiththeinvestigationsof behaviorof thebackplanein thepresenceoffaults.Thefiber-
opticbackplaneconsistsof a setof BusInterfaceUnits(BIU) andRedundancyManagementUnits
(RMU)formingmulti-channelredundantfiber-opticbackplane.Eachchannel,in turn,consistsof asetof
BIUsthataretiedtoaRMUviaseparatefiber-opticread and write buses (the action of read and write are

taken from the perspective of the BIUs). Figure 1 is a depiction of the fiber-optic channel. Fault-

tolerance is achieved by replicating several channels and combining the BIU outputs of the channels in

the RMUs to mask any errors or failures before the data is placed on the read buses. In such redundant

system, the RMUs of different channels communicate with each other through separate fiber-optic

backplane write buses. Figure 2 is a depiction of the fiber-optic backplane. The RMUs also provide

global time synchronization across the backplane and timing control through the channel read buses. All

processing and bus accesses are controlled by time, i.e., all data appearing on the backplane can be

uniquely identified by the time at which they become available. The BIUs of the channels are time

division multiplexed onto the channel write bus. The RMU is the only device that writes to the channel

read bus. Because the RMU is fundamental to the backplane's operation, both the channel read bus lines

and the RMU may be replicated to increase reliability. Finally, the RMU can be integrated with a

gateway to a network thus providing fault-tolerant access to remote processing nodes[l].

read bus

' RIV

write bus

Figure 1. Fiber-Optic channel.

ooo RMU1

• • • RMU 2

• • I
• • I
• • I

• • • RMU k __

Figure 2. Fiber-Optic backplane.

Analysis of the backplane indicates that development of a single channel is sufficient for a

feasibility study of the proposed backplane. Thus, the architecture developed, as shown in Figure 1, has

been demonstrated with only one channel. In order to incorporate fault-tolerance into the system,

additions required to accommodate multiple channels would have to be made to the RMU. The particular

implementation of the architecture that is presented here enables a RMU to connect to as many as 29

BIUs; however, for testing purposes a maximum of four BIUs are sufficient to demonstrate full channel

functionality.

The architecture is designed, developed, and implemented using the Very High Speed Integrated

Circuits (VHSIC) Hardware Description Language (VHDL) [2]. Time constraints did not allow for a full

hardware implementation; however, large portions of the developed architecture were synthesized and

implemented in hardware using Xilinx Field Programmable Gate Arrays (FPGA) [3] on multiple

prototype boards. These FPGA boards can be installed in Personal Computers (PC) such that the PCs act

as the front-end to the FPGA boards for both programming the FPGAs and for controlling the operation

and data transfer to the FPGA boards during their normal operations. Instead of designing one board to

function as a RMU and designing a different board to function as a BIU, it was decided to take advantage

of the flexibility provided by FPGAs to develop a single design so that a board could be programmed to
function as either a RMU or a BIU.

This report presents the development and test cases of a single fiber-optic channel. In Section 2

the implementation issues, the design, and the development of the architecture are discussed. The

hardware design and development of the architecture are presented in Section 3. Test cases and

simulation results are presented in Section 4. Section 5 concludes this report with a summary of the work

accomplishedandadiscussionoffutureenhancements.

Five appendicessupplementthis report. AppendixA includesthe VHDL codefor the
componentsof thisarchitecture.AppendixB containstheC code. AppendixC describesthepin
assignmentandlayout.AppendixD consistsof sampleschedulesanddatapackets,andlastly,Appendix
EdescribestheproceduresforusingallVHDLtoolsin thedevelopmentprocess.

2. Design and Development

As stated in [1] "to support high speed data transmission, the optical receiver is clocked by a

phase locked loop (PLL) which has locked its internal clock to the incoming data stream. Normally,

switching between multiple data streams would represent a problem as this would require the PLL to re-

lock. In this invention, the multiple transmitters in the BIUs, Figure 1, are themselves clocked by PLLs

which are in turn locked to the data stream produced by the RMU transmitters. The multiple transmitters

thus have the same clock source reducing skew and drift and minimizing lock time for the RMU PLL."

The proposed backplane requires fast PLLs with very low lock time. Specifically, the proposed

design requires a PLL with a lock time of a few clock ticks while existing PLLs and DPLLs have a typical

lock time of hundreds of ticks. Our investigations at the initial phase of the development process on

existing PLLs and DPLLs revealed that existing commercial products did not meet the stringent

requirements of the proposed design. The design of a new PLL or DPLL requires more study and is

beyond the scope of this work. As a result, a new alternative is developed to 1) Meet the stringent timing

requirements, 2) Allow continuation of the design and development of the architecture, and 3) Maintain

interoperability with the backplane in the advent of new development in PLL technology, and 4) Keep the
added cost to a minimum.

This alternative incorporates the use of a Global Clock over a separate fiber-optic cable, Figure 3.

The Global Clock resides in the RMU and is broadcast to all BIUs in the channel. In this alternative, the

BIUs are assumed to be at equal distances from the RMU of the channel. In other words, the read and

write buses are of equal lengths. Therefore, all BIUs are guaranteed to be in perfect synchronization with
the RMU and, as a result, the switch-time between the channels is at its absolute minimum of one clock

tick. In addition, in the advent of new and fast PLL technology, the PLL output would simply replace the

Global Clock input to the BIUs. The additional cost of this alternative is, therefore, associated with a

transmitter, a fiber-optic cable, and receivers that are dedicated to the broadcast of the Global Clock.

Read-Bus 1 l l
Data

Clock

IlU (4) BIU (3) BIU (2) BIU (1) RMU

Write-Buses
Data

.1
Data ._

Data MUX

Data -D

Figure 3. Global clock, fiber-optic channel.

2.1 BIU/RMU

Analysis of the behavior of the RMU and BIU revealed that these modules have so much in

common that the BIU should be treated as a special case of the RMU, Figure 4. In particular, the main

functions of the BIU and RMU are transmission of data, reception of data, and execution of the scheduled

instructions. Of course, RMU interpretation of the scheduled operations is slightly different from the

BIU. The only RMU-specific function is voting on the input data and masking out the faulty BIU(s).

However, this function may be performed by an independent module that complements the BIU module's

functionality. As a result, both BIU and RMU can be designed to have identical interfaces to the outside

world. Therefore, the terms BIU and RMU are used interchangeably in the implementation sense.

However, every instance of this module requires its own unique identifier. This identifier is set externally

via the BIU_ID parameter. Also, by accommodating for their differences in interpreting the scheduled

operations via an external bit (BIU_OR_RMU), the BIU/RMU architecture can be developed as a single

module. Joint development of the BIU/RMU has the added advantages of requiring less development

time and code maintenance. Also, it reduces the overall ASIC fabrication cost by 50% since one single

die suffices. Therefore, for the remainder of this report, unless specifically stated, all details and

descriptions of this module apply to both BIU and RMU. The VHDL entity declaration and architectural

description of the BIU/RMU are listed in Appendix A.

BIU/RMU

ProcessInputData

ReceiveInputData

VoteonInputData

StoreInputData

ProcessHousekeeping

ProcessScheduledOperations

SelectProperChannel

ProcessRecordStatus [

ProcessOutputData [

Legend:
RMU-SpecificOperation

Figure4. BIU/RMUfunctionaldescriptions.

TheProcessHousekeepingmodulehandlesthepoweronandresetconditionsby initializingthe
internalcounters,registers,andresettingthelocaltimers.Thedetailsof thisprocessaredescribedin the
Housekeepingsection.

TheProcessInputDatamodulecontinuouslymonitorstheincomingdataby convertingthebit-
serialdatastreamtoparallelwords.It thenstorestheincomingdatapacketin theappropriatebuffersto
beusedbytherestofthesystem.ThedetailsofthisprocessaredescribedintheInputDatasection.

TheProcessOutputDatamoduletransmitstheoutgoingdataatthespecifiedscheduledtime.The
outputdataareeitherinternalstatusreportfromtheBIUoroutputdataof theBIU'sassociatedprocessor.
Regardless,theoutputdatawordsarefirstpacketizedwiththeappropriateheaderandthenserializedfor
transmission.Thedetailsof thisprocessaredescribedin theOutputDatasection.

TheProcessRecordStatusmodulekeepstrackof theerrorsbysettingtheirdesignatedbitsin the
statusregister.Thedetailsofthisprocessaredescribedin theReportingErrorssection.

TheProcessScheduleOperationmodulemanagesloadingof thescheduledoperationsfromthe
ERPOM/RAMby settingtheappropriateaddresslinesandissuingthereadsignal.It thendecodesthe
instructionsandstoresthemin theappropriatebuffers.Thedetailsof thisprocessaredescribedin the

ScheduleFormatandScheduleControllersections.

TheBIU/RMUhastwo typesof interfaces:oneto communicatewith theBIU/RMUof the
channelandtheothertocommunicatewithBIU'sassociatedprocessor,Figure1. TheInputandOutput
modulesaredesignedto communicatewiththeBIU/RMUaswellastheassociatedprocessor.Although
theBIU andRMU exchangedatavia serialfiber-opticbuses,thedatato andfromtheassociated
processorof theBIUareexchangedinparallelwordsusingseparateFIFOs.In orderfor thismoduleto
transmitandreceivedatasimultaneously,twoFIFOinterfacesare,therefore,necessaryto handlethe
inputandoutputdataflux.

2.2 Packet Formats

The data and status information as well as the commands issued by the RMU are stored in

packets based on one of the formats depicted in the following figure. However, the type of packet format
is based on the nature of the information to be sent to the destination BIUs.

K

K

K

Sync-Header
(8-bits)

Sync-Header
(8-bits)

Sync-Header
(8-bits)

KMSR

KMSR

KMSR

K

BIUId 0 Command(5-bits) (8-bits)

K

BIUId 0 Count(5-bits) (8-bits)

K

BIUId 0 Count(5-bits) (8-bits)

K

0

K

0

Data
(8-bits)

Status
(8-bits)

OO0

O00

K

0

K

0

Data
(8-bits)

Status
(8-bits)

Sync-Header, 8 bits

Sync-Pattem, 10 bits

= 1111_1111

= 1_1111_1111_0

BIU Id, 5 bits, identifies the destination of the packet.
Reserved = 0_0000

Global Id, Reserved = 1_1111

K = Sync Bit = 1 ==> Sync-Header follows

= 0 ==> Data, Command, or Status follows

M = Mode Bit = 1 ==> Command

= 0 ==> Data or Status

S = Status Bit = 1 ==> Status

= 0 ==>Data

R = Reserved Bit

Figure 5. Packet formats.

All packet formats share a common scheme. This underlying scheme consists of three 9-bit

words where each word is constructed from an 8-bit byte that is preceded with a synchronization bit (K).

The synchronization bit is zero except when indicating the Sync_Header.

The first word of a packet is the Sync_Pattern, the second word is a collection of flags and

BIU/RMU identification, and the third word is either a command or a count. To achieve synchronization

over a distance between BIUs and RMU, the Sync_Pattern (1_1111_1111_0) is designed so that it is

guaranteed to be unique throughout the system. The Sync_Pattern is a unique 10-bit pattern consisting of

a string of 9 ones followed by a zero. Since the first bit of the second word has to be a zero, that bit is

used as part of the Sync_Pattern.

The second word consists of three 1-bit flags; Mode (M), Status (S), and Reserved (R) flags,

followed by a 5-bit identification field that is used for both BIU and RMU. The significance of the third

worddependsontheflagsthatareset. If theMode (M) bit is set, then the third word is a command for

the BIUs; otherwise, it is a count of data or status words to follow. In this case, the packet will be more

than three words long. Since count is an 8-bit field, the maximum number of status or data is limited to

255 words per packet.

If the Status (S) bit is set, then the packet holds status information and thus it is forwarded to the

output FIFO. Otherwise, it is a data packet intended for the BIU whose identification is in the packet

header. In this case, only the target BIUs fetch the packet and forward it to their associated processors

(via the output FIFOs), while all other BIUs simply ignore the packet.

The BIU Id can be used as another layer of redundancy to check against scheduled operations for
local detection of failures.

The Reserved (R) bit is not used at this time. It could be used as part of the BIU/RMU

identification and to expand the number of BIUs in a single backplane channel.

2.3 Performance

The calculation of the read bus bandwidth efficiency as a function of packet size follows.

Packet Overhead = MUX Switch Time + Data Packet Header + Overhead per Data Byte

where,

MUX Switch Time

Data Packet Header

Overhead per Data

= 1 clock tick = 1 Word = 9 bits

= (Sync_Header + Flags) + BIU_Id + Count of Data Words

= 3 Words = (3 * 9) bits

= 1 bit

So, with n = Number of Data Words as specified in Count Field,

Overhead = 9 + (3 * 9) + (1 * n) = 4 * 9 + n = (36 + n) bits

%Overhead = Overhead / Packet Size * 100 = (36 + n) bits / ((4 + n) * 9) bits * 100

and

%Efficiency = 1- %Overhead = n * 8 / ((n + 4) * 9)

As evident from the above equation, as n grows, so does the %Efficiency.

bandwidth efficiency is displayed as a function of data bytes in a packet in the following figure.

shown, the efficiency approaches the maximum (about 89%) for moderate size packets.

The read bus

As is

100

90

80

70

6O

._ 50

w

4O

3O

2O

10

0

/

Bandwidth Efficiency

ji,4 414 .B.i .l.i .11.11.B.I .11.1 -B-I -I1-1 -I1-1 -I1_ I'B'l "B'll I'IM "B'l "B'I "IN I'11"11"B'l kll'l _ _

Figure 6. Channel read bus bandwidth efficiency as a function of packet size.

2.4 Reporting Errors

The status register, Status_Reg_O, is introduced to keep track of errors at various sub-modules.

Figure 7 provides a detailed description of the status register. Various bits of this register indicate

specific errors and, therefore, are set by their designated sub-modules upon detection of errors. The

content of this register is transmitted at the scheduled times and after setting the Status (S) bit of the

packet.

Bit Error Name Error Description

0 Read_FIFO_Error_l

1 Read_FIFO_Error_2

2 Receive_Error_l

3 Receive_Error_2

4 EPROM_Error_Flag

5 None

6 None

7 None

Error in input FIFO data packet header

Attempted to read from empty input FIFO, i.e. missing data

Data didn't arrive within the expected reception window

Received unexpected data

Didn't detect end-of-schedule in the EPROM/RAM

None

None

None

Figure 7. Status_Reg_0, error bit assignments.

2.5 Housekeeping

After power on and upon reset the BIU/RMU resets its internal counters, clears its registers, and

resets its transmitter and receiver clocks. Figure 8 depicts the flowchart of the power on and reset

activities. If the BIU_OR_RMU bit is set high, the architecture is that of a BIU. It goes into a wait state

where the BIU awaits the Start_Cycle command from the RMU. Otherwise, the architecture is a RMU

and begins reading the scheduled operations and takes appropriate actions at the right times. As further

described in Section 3.8, Schedule Format, the first two instructions of the schedule are reserved for the

RMUs only. The first instruction indicates broadcasting of the Start_Cycle command to all BIUs in the

channel while the second instruction is a wait instruction for the RMU for the specified delta time so that

the BIUs can catch up with the RMU. Upon receiving the Start_Cycle command, the BIU resets its

internal counters, clears its registers, and resets its transmitter and receiver clocks. At this time, all BIUs

are synchronized with respect to the RMU. The BIUs and RMU then repeat reading the scheduled

operations and execute scheduled instructions at the specified times.

10

Poweron/ Reset

1
Reset Counters

Clear Registers
Start Clocks

"\\ BIU
BIU OR RMU ?_

f

RMU

Wait

No

Read scheduled

instructions and

operate on them

Reset Counters

Clear Registers

Adjust Clocks

Figure 8. Power on/reset operations.

2.6 Input Data

Data reception requires continuous conversion of bit-serial data stream to parallel bytes. The

incoming data bit stream is monitored to detect the Sync_Pattern. Figure 9 depicts the flowchart of the

incoming-data controller. Upon detection of the Sync_Pattern the receiver clock is adjusted so that the

following data are retrieved at appropriate word boundaries (see Section 3.6 System Clocks). If the

BIU_ID part of the second word does not match the BIU_ID of the particular instance of this module,

then the Status bit is examined. If the Status bit is not set then the rest of the data packet will be ignored.

Otherwise, the packet is treated as a Status packet and is simply routed to a FIFO in its entirety. If the

second byte matches the BIU_ID of a particular instance of this module, then the Mode bit is examined.

If the Mode bit is not set then the rest of the data packet will be treated as a data packet for this module

and will be routed to a FIFO. Otherwise, the packet is treated as a Command packet from the RMU and

the proper action will be taken.

11

GetFirstByte

ProcessData

.J

N_McomOde Bit = 1 ?_

man_

_ges

Process Command

Figure 9. Incoming-packet controller.

To accommodate for minor variations in the lengths of the busses, a reception window is

established to provide an added flexibility to the architecture. The duration of this window is controlled

externally and can range from 0 to 7 byte clock ticks by setting the three Switch_Time In bits. The

maximum reception window of 7 byte clock ticks allows for a maximum of 7 bytes * 9 bits per byte * 10

ns per bit = 630 ns = 630 feet variations in the lengths of the busses (assuming a 100 MHz clock, and that

light travels 1 ft/ns). The reception window starts at the scheduled data reception time, and lasts as long

as the reception window size or until a data packet is received. If the scheduled data packet is not

received during this time or if it arrives outside this window, then the errors are reported by setting their

designated bits, bits 2 and 3, respectively, in the error register Status_Reg_O. Figure 7 provides a detailed

description of the status register.

Voting of the data is an RMU-specific function and is performed by all RMUs in a redundant

multi-channel system to provide fault tolerance for the full FBL/PBW backplane. In a redundant multi-

channel system, all RMUs broadcast their input data to all other RMUs as data become available.

Therefore, a BIU output is available to all RMUs at the same time. Each RMU then votes on the data it

receives from RMUs of other channels and on the data from the corresponding BIUs of its channel,

Figures 1 and 2. In case of any discrepancy, the faulty BIU is identified and masked out. The voted BIU

12

outputis broadcastin thelocalchannels.Sincethedesignanddevelopmentof thevotermoduleis
beyondthescopeof thiswork,thevoterimplementationis leftforfuturework.

2.7 Output Data

Data transmission requires reading a data packet from a FIFO, checking the data integrity by

examining the packet header, and converting the data bytes into a continuous serial bit stream. Figure 10

depicts the flowchart of the outgoing-data controller. If the packet header, specifically the Sync_Pattern,

is not detected at the expected time, then an error is registered and the transmission operation is aborted.

Also, to avoid issuing any commands by the microprocessor to the RMU and to safeguard against any

undesirable side effects, the Mode bit is examined. As previously described in Figure 5, if the Mode (M)

bit is set, then that word is a command for the BIUs. Therefore, to guarantee that the commands are

issued and, thus, the Mode bit is managed from inside the FBL/PBW backplane architecture (specifically

only by the RMU), the Mode bit is examined and if it is set by the BIU's associated processor, then an

error is registered and transmission operation is aborted.

Read and
transmit the rest

of the packet

Get Second Byte

__ (comMOdeBit = 1

?_

ma_

 Y°s
Record Error

and

Stop

Figure 10. Outgoing-packet controller.

2.8 System Timers

To synchronize and maintain synchronization between the receiver of a BIU/RMU and the

transmitter of another BIU/RMU at the proper word boundaries, the receiver needs to constantly adjust to

the transmitter. As a result, the receiver part of a BIU/RMU must operate with a different timer than the

13

restof theunit. Topreventpropagationofphaseshiftsin thereceivertimertotherestofthesystemand
safeguardagainstanysideeffects,a secondtimer,thetransmittertimer,is introduced.Therefore,the
BIU/RMUhastwotimerregions:areceivertimerregionandatransmittertimerregion.To maintain
designflexibility,provisionsaremadesothatthetransmittertimercanbeadjustedandsynchronizedwith
thereceivertimer;however,it mustonlybedonewhentheBIU/RMUsarein the idlestate. The
synchronizationof thetransmittertimerwiththereceivertimerisachievedasascheduledeventandatthe
desiredsynchronizationintervalviaaRMUcommand.

Separationof thetwo timershastheaddedadvantageof applicabilityto a broaderclassof
architecturesbyeliminatingthefix distanceconstraintbetweentheBIUsandRMUof onechannelaswell
asbetweentheRMUsof multiplechannels.In addition,thecostof thesecondtimer,fourflip-flops,is
negligible.

Althoughthedatainandoutof theBIU/RMUareserialbit streams,theBIU/RMUoperatesat9
bit wordboundaries.Therefore,theBIU/RMUrequiressystemtimersthatoperateatthewordlevel.
Sincetheserialdatabit streamsare9-bitwords,thesystemclocksarederivedfromtheincomingbit
clockbydividingthebit clockby 9. Operatingat thewordlevelhastheadvantagethatmostof the
BIU/RMUoperatesataslowerclockrateandtheperipheralssuchastheFIFOsandEPROM/RAMcan
beslowerdevices.Thisslowerclockrateallowsfor lessstringentrequirementsonthesignalloadand
routing,andtherefore,ismorecosteffective.In additionandfromtheuser'sperspective,deltatimefor
thescheduledoperationswill bewith respectto thesystemtimersand,henceindependentof the
communicationrate.

2.9 FIFO

In order to make the simulation results comparable to those of the prototype boards, the generic

FIFO module developed for this design is modeled after Am7204A 1FIFO chips. This VHDL model is

comparable with the Am7204A FIFO in both interface and timing characteristics. In addition, this VHDL

FIFO model is a generic model so that by adjusting its parameters, it can be defined to be as wide, deep,

and fast as necessary. This VHDL model is synthesizable and the VHDL code is included in Appendix A.

2.10 EPROM

For simulation purposes a high level VHDL model of a generic EPROM was developed that is

pin-to-pin and package compatible with a generic RAM. However, for design flexibility, the interface for
this module is modeled after the NM27C128, 128k-word x 8-bit EPROM 2 and HM6264ALSP, 8192-word

x 8-bit High Speed Static CMOS RAM 3 which are pin-to-pin and package compatible. The EPROM

module contains the scheduled instructions and the relative time of their operations. The EPROM has to

be 16-bit wide and deep enough to hold all scheduled events. The schedule format is described in the

following section and schedule examples are listed in Appendix D.

1 Am7204A is a CMOS FIFO and a product of the Advanced Micro Devices.

2 Products of National Semiconductor Corporation.

3 Products of HITACHI Corporation.

14

2.11 Schedule Format

The scheduled events and instructions are stored in an EPROM or a RAM based on the format

depicted in the following figure.

Delta Time

(8 -bits)

Transmit

(1-bit)

Receive

(1-bit)

Status/Data/Command

(1-bit)

BIU/RMU Id

(5 -bits)

EPROM/RAM Width = 16 bits

Status/Data/Command = S/D/C

AT = Delta Time >= 0 ==> Delta Time between consecutive instructions

Tx = Transmit Bit = 1 ==> Transmit

=0 ==>No-op
Rx = Receive Bit = 1 ==> Receive

=0 ==>No-op

S/D/C = Status Bit = 1 ==> Data for BIU and Command for RMU

=0 ==>Status

Id = BIU Id = 1 .. 30 (base 10)

End of schedule delimiter is 31 in base 10 (i.e. XXFF in base 16)

Tx Rx S/D/C Descriptions

0 0 0 RMU and BIU No-op

0 0 1 N/A

0 1 0 N/A

0 1 1 RMU and BIU Receive Data

1 0 0 RMU and BIU Transmit Status

1 0 1 RMU Transmit Command and BIU Transmit Data

1 1 0 N/A

1 1 1 RMU and BIU Stop

Example:

In the following schedule example, RMU Id = 27 and Global Id = 31.

AT Tx Rx S/D/C Id

10 1 0

5 0 0

5 1 0

1 0 1

4 1 0

2 0 1

19 1 0

1 0 1

15 1 1

1 27

0 27

0 27

1 31

0 1

1 31

1 31

Descriptions

RMU will transmit Start_Cycle command after 10 clock cycles

RMU will do nothing and waits for 5 clock cycles until BIUs restart

RMU will transmit its status after 5 clock cycles

All BIUs should expect to receive data in 1 clock cycle

BIU 1 will transmit its status information after 4 clock cycles

All BIUs should expect to receive data after 2 clock cycles

BIU 3 will transmit its data after 19 clock cycles

BIU 4 should expect to receive data after 1 clock cycle

i.e., 0FFF, all BIUs stop reading the schedule after 15 clock cycles

Figure 11. Schedule format for EPROM/RAM.

15

The scheduled events are 16 bits wide, i.e. two 8-bit bytes. The little-endian notation is used to

describe different segments of the schedule events. The first byte is reserved for delta time. This allows

for a time interval between two consecutive events to be at most 256 system timer ticks. However, to

extend this time interval beyond 256 clock ticks, no-op instructions should be inserted between the actual

events. The three most significant bits of the second byte are used in the communication process.

Specifically, bit 7 of the second byte indicates transmission event, bit 6 indicates receiving event, and bit

5 indicates the nature of the event as being status, data, or command. The five least significant bits, bits 4

through 0, identify the RMU/BIU that is scheduled to take the appropriate action after the delta time has

elapsed. Therefore, this format allows for one RMU and a maximum of 29 BIUs per channel.

The first two instructions of the schedule are reserved for the RMUs only. The first instruction

indicates broadcasting of the Start_Cycle command to all BIUs in the channel. The second instruction is

a wait instruction for the RMU for the specified delta time so that the BIUs can catch up with the RMU.

The duration of the wait time is a function of the communication means and the delay in processing of the

Start_Cycle command by the RMU and BIUs. The wait time, therefore, is given by the following

equation:

Wait Time = Command Process Delay + Read Bus Delay

The Command Process Delay is a constant delay and is determined to be five system timer ticks

for this implementation. It is the total delay in constructing the package, transmitting the Start_Cycle

command by the RMU, and receiving the command by the BIUs. The Read Bus Delay is determined by

the time it takes for the data to reach from the RMU to the BIUs of the channel and is directly

proportional to the length of the bus. Since the BIUs are assumed to be of equal distances from the RMU

of the channel, after elapse of the wait time, the BIUs will be synchronized with respect to the RMU. The

example depicted in Figure 11 indicates a Delta Time of 5 system timer ticks. The second instruction of

the schedule corresponds to the read bus delay of zero.

When the bit 7 of the second byte is set high, it is interpreted by the BIUs as a transmit

instruction. However, the RMU interprets it as a switch channel instruction and uses the BIU identity

field, bits 4 through 0, as the multiplexer select lines to switch to the appropriate BIU write bus.

2.12 Schedule Controller

Reading of the scheduled operations from the EPROM/RAM requires setting the appropriate

address lines and issuing the read signal. The Schedule Controller manages loading of the instructions

from the EPROM/RAM. The scheduled instructions are pre-fetched, decoded, and stored in appropriate

buffers. In particular, the time field is extracted and stored in the Delta_Time_Clock and the instruction

field in the Instruction Buffer registers. The current instruction is then decoded. The corresponding flags

that initiate the execution of the specific operations, such as transmit and receive, are raised only after the

elapse of the delta time. Section 3.9 provides a detailed description of the scheduled instructions in
EPROM/RAM.

16

2.13 BIU Testbench

The BIU testbench, Figure 12, encompasses the BIU/RMU and all the necessary components for

its normal operations as a separate prototype board. The adjoining components are an EPROM/RAM that

contains the scheduled events of operations, a FIFO for the input data, a FIFO for the output data, and a

microprocessor (PC) with its associated input and output files that acts as the BIU font-end. A single

external bit (BIU OR RMU = VCC) specifies its functionality to be a BIU. These components are an

integral part of testing BIU/RMU functionality.

IFII :O-C ut_

3/ 3;

BIU-Id t

I

5 t
I

I

Data Out Data Data

VCC

BIU OR RMU

uP Data Bus BIU/RMU

Control

Data In

Flags CS INTR

Clock

lORD

IOWR

EPROM/

RAM

(Schedule)

Legend."
Wire t_

Fiber

IORD IOWR Address
AEN

PC

Data
8_ Input File

_[Output File
L

Figure 12. BIU testbench.

2.14 RMU Testbench

Analysis of the behavior of the RMU revealed that by preserving the BIU interface to the FIFOs,

the RMU's interface could be defined as a special case of the BIU's interface. As a result, one FIFO is

used for both input and output of data for the RMU.

The RMU testbench, Figure 13, encompasses the BIU/RMU and all the necessary components for

its normal operations as a separate prototype board. The adjoining components are an EPROM/RAM that

contains the scheduled events of operations, a single FIFO for both the input and output data, and a

microprocessor (PC) with its associated input and output files that acts as the RMU front-end. The RMU

testbench, therefore, is similar to the BIU testbench and by proper setting of a single external bit

(BIU_OR_RMU = GND), its functionality is distinguished from that of BIU. These components are an

17

integralpartoftestingBIU/RMUfunctionality.

FIFO-

Out -

In 3_ •

•3_

RMU-Id i

i
5 I

I

i

Data Out Data Data

GND i
i

Clock

BIU OR RMU

uP Data Bus BIU/RMU

Control

Data In

Flags CS INTR

lORD

IOWR

Clock

EPROM/

RAM

(Schedule)

Legend."
Wire]l*

Fiber l_

IORD IOWR Address
AEN

PC

Data
8_ Input File

_[Output File
L

Figure 13. RMUtestbench.

2.15 Microprocessor (PC)

The microprocessor (PC) is a high level representation of a generic microprocessor and is

designed for simulation and testing purposes only. For simulation and testing flexibility, the

microprocessor is designed so that it could be tailored to represent processors with different read cycles,

different write cycles, and different clock rates. Also, different instances of this module can be

programmed to transmit different counts of data packets with different data packet sizes. However, a

particular instance of a microprocessor transmits a given number of data packets of the same sizes. Also,

the microprocessor is assumed to have an identical copy of the BIU/RMU schedule.

The microprocessor operations are shown in the following flowchart, Figure 14. Since the

microprocessor is assumed to be independent of the BIU, the communication between the BIU and its

associated microprocessor is therefore asynchronous. As a result, the microprocessor receives an

interrupt from its associated BIU at the start of every schedule cycle and after receiving the Start_Cycle

command from the RMU. The microprocessor will reset the FIFOs, sample the sensors, send the data to

the input FIFO, and then acknowledges the interrupt to the BIU. Note that the microprocessor can read

processed data from the output FIFO at any time. This data is assumed to be stored in either a large cache

or an output file. For simulation and testing purposes the data sent to the input FIFO is the output of

counters internal to the microprocessor module.

18

Interrupt From BIU

Reset FIFO (s)

Sample external

input data and
send data to BIU

via Input FIFO

Acknowledge

Interrupt

Figure 14. Microprocessor operations.

2.16 Fault Injection

There are many methods of injecting faults in the system. Three methods of injecting faults into

this system are described here. The first is the brute force method where a BIU is turned off. Since at

power down the exact state and condition of the BIU is not known, this method of fault injection is

random. In simulation, however, turning off the BIU can be accomplished by forcing the BIU to reset

where it waits in the idle state during the simulation process. This method of fault injection covers the
fail silent scenario.

The second way of injecting a fault is through the schedule and by instructing the BIU to stop

transmitting data at a specific time. In effect, the BIU goes off line at the designated time. As a result,

the time of fault occurrence is predicable. Since the fault can be scheduled to occur at a specific time, this

method is extremely helpful in examining integrity of the system in the presence of a fault at different

states of the system. This method, therefore, provides a general means to analyze the architecture under
various crash failures.

The third method is also through the schedule but by switching the channel to another BIU,

preferably an unattached BIU. As a result, even though all BIUs are functioning normally, switching to a

bogus channel will in effect disrupt proper routing of the intended BIU output to the target BIUs. This

method can simulate data packet corruption through the write bus as well as BIU babbling.

19

Thesefaultinjectionmethodscoveronlyasubsetof thefaultsthatthisarchitectureisdesignedto
tolerate.Intheinterestof time,furtherfailureanalysisandevaluationofthisarchitectureis leftforfuture
work.

2.17 Fault Recovery

In the case of brute force method where a BIU is powered down, the BIU can be reintroduced

into the system upon power on and at the start of the next schedule cycle. At power on, the BIU resets its

internal registers and enters the idle state, Figure 8, awaiting the Start_Cycle command from the RMU

before restarting its normal operations. Therefore, this fault recovery capability lends itself to upgrading

the system by taking the BIUs off line, one at a time, and without having to power down the whole

system.

In all other cases, where a BIU is either babbling or is not transmitting data, the BIU may recover

from the fault provided that the fault is not persistent. In that case, the BIU may recover at the start of the

next schedule cycle and upon receiving the Start_Cycle command from the RMU. However, if the fault

persists for more than one schedule cycle, then the BIU may never recover.

2.18 Reporting Faults

Regardless of the nature and timing of the faults, as far as the rest of the system is concerned, the

symptoms are the same. These symptoms eventually show up on the read and write busses. When

matched against the scheduled activities on these busses, the faulty BIU and nature of the fault is

identified. The symptoms indicate whether the faulty BIU is babbling or is not transmitting at the

scheduled time. These errors are reported by setting their designated bits, bits 2 and 3, respectively, in the

status register Status_Reg_O. Figure 7 provides a detailed description of the status register. A more

descriptive error reporting would require time stamping the errors. However, this implementation is left
to future enhancements.

2O

3. Hardware Development

The FBL/PBW backplane was developed using VHDL. The VHDL code was synthesized using

Synergy, a Cadence product, and targeted for the Xilinx FPGAs [3]. The FPGAs along with other off-

the-shelf ASIC devices were used to construct a prototype board that would plug into the PC-AT bus.

The PC was then used as the front-end to the prototype boards for both programming the FPGAs and for

controlling the operations and data transfer to the boards during the normal operations. Instead of

designing one board to function as a RMU and designing a different board to function as a BIU, it was

decided to take advantage of the flexibility provided by FPGAs to develop a single design so that a board

could be programmed to function as either a RMU or a BIU. To be able to program the FPGAs, a PAL

was used to decode the base address of the I/O ports on the prototype board. For design flexibility, a

generic interface was designed so that any microprocessor could interface with the board during its

normal operations. This generic interface was separately programmed on a XC3020 [3]. The rest of the

VHDL code encompasses the BIU/RMU module and was programmed on a XC4005A [3] that was

selected for its size and larger number of I/O pins than the XC3020. The prototype board was wire-

wrapped, tested, and its functionality verified. The prototype board functioned at 40 Mbps and

demonstrates that the FBL/PBW backplane implementation was feasible.

3.1 PAL

The PC interface logic 4 for programming the XC3020 of the prototype board was implemented

using a PALL22V105. The base address of the prototype board was 300H. Address 306H was used to

reset and address 307H was used to reprogram the XC3020 FPGA. The rest of the addresses were used to

interact with the FIFOs and XC4005A. When resetting the XC3020, bits 0 and 1 of the PC data bus were

used to control the RESET and Done/Program signals of the XC3020, respectively. For programming of

the XC3020 the PC data bus bit-0 was used to download the binary file to the XC3020. The VHDL

implementation of this interface is listed in Appendix A, the related C code is listed in Appendix B, and

the pin assignment is listed in Appendix C.

4 IBM, "IBM Technical Reference for Personal Computer AT, # 6280070."

5 Product of AMD Corporation.

21

3.2 Address Assignment

The address assignment and their purposes in the prototype board are as follows:

New Address Device Function

300H XC3020 Read/Write FIFOs

301H XC3020 Read status of FIFOs

302H XC3020 Write status (Reset FIFOs)

303H XC4000 Transfer Data

304H None None

305H XC3020 Reset and Program XC4000

306H PAL Reset XC3020

307H PAL Program XC3020

3.3 XC3020 and Microprocessor Interface

The XC3020 was programmed with a generic interface to allow a BIU and its associated

application microprocessor to exchange data. The application microprocessor is assumed to be either an

Intel 80X86 type or Motorola 68XXX type. In the prototype board the host PC played the role of

application microprocessor after initial board setup and programming of the FPGAs. Since the

application microprocessor accesses the FIFOs through its data bus and performs either read or write

operation, the output bus of the output FIFO and the input bus of the input FIFO are tied to the

microprocessor data bus via a bus controller. When exchanging data with the FIFOs, the bus controller

relinquishes control to the microprocessor; otherwise, it tri-states the bus so that there will not be any

interference with the microprocessor's normal operations. The VHDL implementation of this interface is

listed in Appendix A and the related C code is re listed in Appendix B.

3.4 Programming XC4005A and Testing FIFOs

Upon setting up the prototype board and programming the XC3020, the XC4005A can be

reprogrammed to implement the BIU/RMU functionality. Independent programming of the XC3020 and

XC4005A allows for ease of modification to the BIU/RMU without having to turn off and on the PC and

setting up the prototype board. The control signals of the XC4005A, i.e., Program and Done signals, are

brought into the XC3020, and the XC4005A status are stored in a status register. Contents of this register

are then accessed by the microprocessor for test and debugging purposes. Also, to enable monitoring of

the status of the FIFOs, the FIFO status flags, e.g., Full-Flag, Empty-Flag, and Half-Full, are also stored

in a status register and are accessed by the microprocessor. The VHDL implementation of this interface

is listed in Appendix A and the related C code is listed in Appendix B.

22

4. Simulation Results and Test Cases

In this section two test cases are presented to demonstrate the capabilities of the FBL/PBW

backplane. In the first test case the system operation under ideal conditions is examined. In the second

case failure of a BIU due to power down or reset is studied.

The single channel under study consists of one RMU and four BIUs. To examine the operations

of the system under various conditions, a generic schedule is setup to encompass all aspects of the fault

injection and recovery while exercising all BIUs. In these test cases the schedule consists of transmission

windows for the BIUs in the following order: 1, 2, 3, 4, 1, 2, 1, and 3. The following figure shows the

typical activities of the BIUs during one scheduled period in the absence of faults.

BIU_2 output BIU_4 output

Figure 15. Typical scheduled activities.

In Figure 15 and subsequent figures, rmu_out is the output of the RMU that appears on the read

bus. rmu_in is the input data to the RMU after multiplexing the BIU outputs from the write buses, biu_in

is the same as rmu_out but at the input of the BIUs. mux_select indicates the selection value and hence

the particular BIU output to be routed via the RMU. biu out i corresponds to the output of the BIU i that

appear on its write bus. The horizontal axis is the time axis.

4.1 Ideal Case

In this case as shown in Figure 16, the system operation is shown under ideal conditions where

the delays in the read and write busses are assumed to be zero and no fault exists. In this case, the BIU

and RMU clocks are shown to be in perfect synchrony. The Schedule for this test case is listed in

Appendix D.

23

TransmissionslotsforBIUs
inoneschedulecycle:

1 2 3 1 2 1

Figure 16. Ideal conditions.

Figure 17 and 18 are the details of Figure 16. In Figure 17 transmission of the BIU_3 can be

traced to appear at the output of the RMU after a few clock ticks. In Figure 18 the Sync_Header appears

at the output of RMU and is detected by the BIU_I. Upon resynchronization, BIU_I issues an interrupt

to its associated processing element.

24

BIU 3 transmission BIU_3 output appears at the output of RMU

BIU_I and RMU clocks are synchronized

Figure 17. Ideal conditions, BIUs and RMU axe in perfect synchrony.

25

Sync_Headers

BIU_I detects Sync_Header and resynchronizes with RMU BIU_I sends interrupt to PC

Figure 18. StaJct-Cycle command, BIU clocks axe re-synchronized with the RMU clock.

4.2 Failing a BIU

Forcing the BIU to reset simulates, for example, failure of a BIU due to loss of power. In this test

case, the system starts with all BIUs functioning normally. BIU 1 is then forced to reset in the middle of

a scheduled period. As a result, BIU 1 (biu_out_l signal in Figure 19) stops executing scheduled

instructions and is taken off line. Figure 19 depicts system activities for three consecutive scheduled

cycles. As evident from Figure 19, BIU 1 (biu_out_l) stops transmitting for the rest of the second

scheduled cycle. Figure 20 is a detailed picture of Figure 19 and depicts system activities for the duration

of the second cycle. In case of loss of power, BIU 1 will remain off line. However, after it is powered

on, BIU 1 will recover at the start of the next scheduled period. The BIUs have similar behavior in the

case of reset. In other words, if a BIU is reset during normal operation, it will recover and join the system

at the start of the next scheduled period although the RMU may choose to mask it out. Figure 21 provides

the details for the recovery of BIU 1. The Schedule for this test case is listed in Appendix D.

26

BIU 1 Fails

Schedule cycles 1 2 3

Figure 19. BIU 1 is powered down for one cycles.

27

_i_i,,;_ _]_il _ _ _i _ t

_'__ _<_:_'__,_ __ _:_:. *:&_ek:

,,,,,,,aLaill.allfiiNlUllll|laN_llI_]!..............................,/_m_i_l_ll,o,o,.

...:_i<:

_,.."l_l

i..........................

b_ _...

Figure 20. BIU 1 is powered down (detail).

,'_...._el_t;. _ _l_t_-_t

e

ii

..!_!.<_::o:.:oJ{ ..

]]]]]

:]]]]]

Fo:ou:oo:G:o:.:U:o:ouo:o:.:Li:o:o:-LI:O:O:W........
- _

....................... 4-

m ½i:: U L/ ',_ u:°::LF::]LF°i_°:°::U,.......
............... ,i+>>>>>>>>:_,. ,,,,,,,,,,,.

Figure 21. BIU 1 recovers, Start-Cycle command.

28

5. Summary

A single channel, fault-tolerant, fiber-optic backplane was developed to study the feasibility of

the proposed architecture by Palumbo [1]. This backplane also assists with the investigations of behavior

of the architecture in the presence of faults. The particular implementation of the architecture that is

presented here enables a RMU to connect to as many as 29 BIUs; however, for testing purposes a

maximum of four BIUs are sufficient to demonstrate full channel functionally. The architecture is

designed, developed, and implemented using VHDL. Time constraints did not allow for a full hardware

implementation; however, a large segment of the developed architecture is synthesized and implemented

in hardware using Xilinx FPGAs on multiple prototype boards. The prototype boards are designed so that

they can be configured to function as either a BIU or a RMU. Analysis of the test cases shows the

feasibility of the backplane as well as backplane integrity in the presence of faults and recovery from
faults.

5.1 Future Enhancements

There are two areas that require enhancements. The first is the design and development of a voter

module for the RMU so that the backplane can be replicated and the proposed architecture can be studied

in its entirety. The other enhancement is the introduction of a new parameter in the schedule, probably a

third byte, to account for the variable length buses and to make the switch-time overhead minimal. This

feature could replace the data arrival window currently implemented and thus maximize bus utilization.

This parameter, delta time, needs to be associated with BIUs and its value needs to be an indication of the

distance to the RMU so that the RMU switches the multiplexer after this delta time.

29

References

[1]

[2]

[3]

Dan Palumbo: Fault-Tolerant Processing System. U.S. Patent Number 5,533,188, July 2, 1996.

IEEE Standard VHDL Language Reference Manual, IEEE 1076-1987.

Xilinx, "The Programmable Gate Array Data Books," 1992 and 1994.

30

Appendix A

VHDL Codes

File Conventions:

All modules are separated into entity and architecture pairs and

are stored in separate files. The file name convention used is as

follows:

filename_filetype.vhd

where, in order to maintain the file names compatibility on the PC and

the workstation the filename is restricted to only six characters.

The filetype is a single character and can be e for entities, a for

architectures, t for testbenches, or p for packages. All files have

the same vhd extensions. For instance, the FIFO module is stored in

fifo e.vhd and fifo a.vhd files.

All files have a document section where the file attributes

including the author, file name, file use, and all of the activities

are chronologically described.

Naming Conventions:

The reserved words are in lower cases while the user defined names are

either all in upper cases or at least the first character is in upper

case. All user defined names are as descriptive as possible and

underline characters are used to make them legible.

The I/0 signals have one of the following forms:

Signal_Name_In for input signals,

Signal_Name_Out for output signals, and

Signal_Name In Out for input and output signals.

Active low signals are defined as:

Signal_Name_Bar

3]

-- File Name:

-- Host Machine:

-- Target Machine:

-- Environment :

-- Organization:

-- Project:

-- Author:

-- Creation Date:

CNSTNT 2.VHD

GATEWAY 486/33 (IBM AT Clone)

GATEWAY 486/33 (IBM AT Clone)

Model Technology VHDL Simulation for Windows (Vet 4.2e)

DOS Version 6.2

NASA-LaRC

Fly By Light - Power By Wire (FBL-PBW)

Mahyar R. Malekpour

3/19/96

-- Name/Number:

-- CNSTNT P.VHD

-- Abstract:

-- Acronyms/Abbreviations:

-- FBL/PBW

-- Dependencies:

-- none

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on: 4/9/1996

-- by: Mahyar Malekpour

-- Address Device Use

-- PORT ADDRESS 0 XC3020 Read/Write FIFOs

XC3020 Read Status of FIFO

XC3020 Write Status (reset FIFOs)

XC3020 Transfer data between FIFOs

Not used

XC3020 Reset and Program XC4000

PAL Reset XC3020

PAL Program XC3020

-- PORT ADDRESS 1

-- PORT ADDRESS 2

-- PORT ADDRESS 3

-- PORT ADDRESS 4

-- PORT ADDRESS 5

-- PORT ADDRESS 6

-- PORT ADDRESS 7

-- Revisions:

-- Modified on: 4/18/1996

-- by: Mahyar Malekpour

-- Changed port names here instead of in the INTRFC A.VHD file.

-- Modified on: 8/9/1996

-- by: Mahyar Malekpour

-- Added Data_Length_Plus_l and Sync_Pattern.

(entity/architecture)

library IEEE ;

use IEEE.std_logic_l164.all ;

package CNSTNT P is

constant

constant

constant

constant

constant

constant

constant

constant

constant

PORT_Length : integer := 2 ;

Data_ADDRESS : std_logic_vector (PORT_Length downto 0)

Status_ADDRESS : std_logic_vector (PORT_Length downto 0)

Command ADDRESS : std_logic_vector (PORT_Length downto 0)

PORT_ADDRESS_3 : std_logic_vector (PORT_Length downto 0)

PORT ADDRESS 4 : std_logic_vector (PORT_Length downto 0)

PROG 4000 ADDRESS : std_logic_vector (PORT_Length downto 0)

PORT_ADDRESS_6 : std_logic_vector (PORT_Length downto 0)

PORT_ADDRESS_7 : std_logic_vector (PORT_Length downto 0)

:= 000" ;

:= 001" ;

:= 010" ;

:= 011" ;

:= i00" ;

:= i01" ;

:= ii0" ;

:= iii" ;

constant

constant

constant

BASE_ADDRESS : std_logic_vector (6 downto 0) := "ii00000" ; -- 300 thru 307

Data_Length : integer := 7 ;

Data_Length_Plus_l : integer := Data_Length + 1 ;

32

constant

constant

Transmit_Byte_Length : integer := 9 ;

Sync_Pattern : std_logic_vector (Data_Length_Plus_l downto 0) := "iiiiiiii0" ;

-- BIU ID 0 is reserved and should not be used.

-- Only the lower 5 bits are part of the ID and higher 3 bits are reserved.

-- Thus, there are a total of 32 - 2 = 30 BIU/RMUs in a channel.

-- Minus 2 because

-- 8/2o/96
constant BIU ID 0

constant BIU ID 1

constant BIU ID 2

constant BIU ID 3

constant BIU ID 4

constant BIU ID 5

constant BIU ID 6

constant BIU ID 7

constant BIU ID 8

constant RMU ID 1

constant RMU ID 2

constant RMU ID 3

constant RMU ID 4

ID = 0 is ignored and ID = 31 is a global id.

std_logic_vector

std_logic_vector

std_logic_vector

std_logic_vector

std_logic_vector

std_logic_vector

std_logic_vector

std_logic_vector

std_logic_vector

(Data_Length downto 0)

(Data_Length downto 0)

(Data_Length downto 0)

(Data_Length downto 0)

(Data_Length downto 0)

(Data_Length downto 0)

(Data_Length downto 0)

(Data_Length downto 0)

(Data_Length downto 0)

:= "00000000" ;

:= "00000001" ;

:= "00000010" ;

:= "00000011" ;

:= "00000100" ;

:= "00000101" ;

:= "00000110" ;

:= "00000111" ;

:= "00001000" ;

std_logic_vector

std_logic_vector

std_logic_vector

std_logic_vector

(Data_Length downto 0)

(Data_Length downto 0)

(Data_Length downto 0)

(Data_Length downto 0)

:= "00011011" ; -- 27

:= "00011100" ; -- 28

:= "00011101" ; -- 29

:= "00011110" ; -- 30

constant Global BIU ID : std_logic_vector (Data_Length downto 0) := "00011111" ; -- 31

constant Bit Clock Period : time := i0 ns ;

constant

constant

constant

constant

constant

constant

constant

constant

constant

Delay_2_ns : time := 2 ns ;

Delay_5_ns : time := 5 ns ;

Delay_7_ns : time := 7 ns ;

Dela_ i0 ns : time := i0 ns ;

Dela_ 12 ns : time := 12 ns ;

Dela_ 15 ns : time := 15 ns ;

Dela_ 20 ns : time := 20 ns ;

Dela_ 25 ns : time := 25 ns ;

Dela_ 30 ns : time := 30 ns ;

end CNSTNT P ;

-- File Name:

-- Host Machine:

-- Target Machine:
-- Environment :

-- Organization:

-- Project:

-- Author:

-- Creation Date:

PAL22V E.VHD

GATEWAY 486/33 (IBM AT Clone)

GATEWAY 486/33 (IBM AT Clone)

Model Technology VHDL Simulation for Windows (Vet 4.3f)

DOS Version 6.2

NASA-LaRC

Fly By Light - Power By Wire (FBL-PBW)

Mahyar R. Malekpour

09/21/9s

-- Name/Number:

-- PAL22V (entity)

-- /zbstract:

-- This file contains the entity declaration for the PC interface that will

-- be programmed on a PALL22VI0.

-- SIGNAL DEFINITION :

-- Acronyms/Abbreviations:

-- FBL/PBW

-- BIU - Bus Interface Unit

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- Global Objects:

33

-- Exceptions:

-- Machine�Compiler Dependencies:

-- Revisions:

-- Modified on: 10/12/95

-- by: Mahyar Malekpour

-- i. Added CLK In signal to this entity for use by the D flip-flops.

-- 2. Added X CLK Out signal to separate the reset-port and program-port

-- operations. The CLK In is yied to the reset-port and thus to CLK Out,

-- while the X CLK out Ts tied to program-port and is generated for _he

-- Xilinx chip? --

-- Modified on: 10/16/95

-- by: Mahyar Malekpour

-- i. "CLK In" must be hooked up to pin "i" of the PAL22VI0, it is the

-- clock pin _f all flip-flops inside the PAL.

-- 2. "CLK Out" must be hooked up to "CLK In". It is the feedback clock

-- generated by the internal logic of the PAL and is used to latch in DO and

-- D1 signals.

-- 3. "Done_Prog_Bar" must be hooked up to "FeedBack_Done_Prog". It is

-- the feedback for tri-stating the input signal. The Picdesign was wasting

-- too much of the internal logic blocks and I/O pins beyound our

-- expectations and was requiring another PAL to do the job[By manually

-- feeding this signal back to the PAL I managged to tri-state it without

-- additional PAL and saved a lot of I/O pins in the current PAL.

library IEEE;

use IEEE.std_logic_l164.all;

entity PAL22V is

port (

-- Inputs

CLK In

ADDRESS

AEN

IOWR Bar

IORD Bar

RESE¥
DO

D1

INIT

FeedBack_Done_Prog

-- Outputs

Done_Prog_Tristate

CLK Out

X CLK Out

Data Out

Rese_ Out

-- In/Outputs

Done_Prog_Bar

end PAL22V ;

in

in

in

in

in

in

in

in

in

in

std_logic ;

std_logic_vector (9 downto 0) := (others => '0')

std_logic -- Address enable, active high

std_logic

std_logic

std_logic -- Power on reset, active high

std_logic

std_logic

std_logic

std_logic

out std_logic

out std_logic

out std_logic

out std_logic

out std_logic

out std_logic ;

-- File Name:

-- Host Machine:

-- Target Machine:

-- Environment :

-- Organization:

-- Project:

PAL22V A.VHD

GATEWAY 486/33 (IBM AT Clone)

GATEWAY 486/33 (IBM AT Clone)

Model Technology VHDL Simulation for Windows (Vet 4.3f)

DOS Version 6.2

NASA-LaRC

Fly By Light - Power By Wire (FBL-PBW)

34

-- Author: Mahyar R. Malekpour

-- Creation Date: 09/21/95

-- Name/Number:

-- PAL22V (architecture)

-- Abstract:

-- This file contains the architecture for the PC interface that will

-- be programmed on a PALL22VI0.

-- SIGNAL DEFINITION :

-- Acronyms�Abbreviations:

-- FBL/PBW

-- BIU - Bus Interface Unit

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on: 10/3/95

-- by: Mahyar Malekpour

-- i. The Xilinx program-port is at address 301 Hex.

-- 2. The reset-port is at address 300 Hex.

-- 3. Renamed the Reset Out Bar signal to Reset Out for it is a user

-- programmable signal. Reset Out signal is tied _o the power on RESET

-- signal and the D1 signal. Through DI, it can be programmed to stay high

-- or low provided the reset-port is addressed. The reset-port address is

-- 300 Hex, for now.

-- 4. Built a latch for the D1 signal so that the Reset Out signal can be

-- user programmable.

-- Modified on: 10/12/95

-- by: Mahyar Malekpour

-- i. The latch is not implementable on the PAL via the Cadence PicDesign

-- tools. Since the PAL has D flip-flops, I have redefined the latch

-- construct as a D flip-flop for the D1 signal.

-- 2. Added CLK In signal to the entity of this architecture.

-- By feeding ba_k the CLK Out signal generated by the PAL to the PAL via

-- the CLK In signal (pin 1)7 the CLK In signal could be used to clock

-- (latch)--the D1 signal. A good tes_ of the tools used (Cadence PicDesign

-- here) is that it should tie the CLK In signal to pin 1 of the PAL.

-- Note: The CLK In signal assignment to pin 1 should never be altered.

-- 3. Added X CLK Out signal to separate the reset-port and program-port

-- operations. The CLK In is tied to the reset-port and thus to CLK Out,

-- while the X CLK out Ts tied to program-port and is generated for _he

-- Xilinx chip? --

-- Modified on: 3/12/96

-- by: Mahyar Malekpour

-- i. The Xilinx program-port is at NEW address 307 Hex.

-- 2. The reset-port is at NEW address 306 Hex.

library IEEE ;

use IEEE.std_logic_l164.all ;

35

architecture PAL22V Behaviour of PAL22V is

signal PORT 1 SELECTED : std_logic ;

signal PORT 2 SELECTED : std_logic ;

constant PORT 1 ADDRESS : std_logic_vector (9 downto 0) := "ii00000110" ;

constant PORT 2 ADDRESS : std_logic_vector (9 downto 0) := "ii00000111" ;

begin

Check Addresses : process (ADDRESS, AEN, IOWR_Bar, IORD_Bar)

varTable TEMP, TEMP2, TEMP3 : std_logic := '0' ;

begin

TEMP2 := (not AEN) and (not IOWR_Bar) ;

if (ADDRESS = PORT 1 ADDRESS) then

TEMP := 'i' ;

else

TEMP := '0' ;

end if ;

-- writing to reset-port

PORT 1 SELECTED <= TEMP and TEMP2 ;

if (ADDRESS = PORT 2 ADDRESS) then

TEMP := 'i' ;

else

TEMP := '0' ;

end if ;

-- writing to program-port

PORT 2 SELECTED <= TEMP and TEMP2 ;

end process ;

-- Need to be able to reset the Xilinx for longer than one write cycle.

-- Therefore, we need to latch the D1 signal that is used to reset the

-- Xilinx.

Latch Process : process (CLK In)

begin--

if (Rising_Edge (CLK_In)) then

Reset Out <= DO ;

end if ;

end process ;

CLK Out <= not (PORT 1 SELECTED) ;

X CLK Out <= not PORT 2 SELECTED) ; -- not (PORT_SELECTED and (not IOWR_Bar))

Data Out <= DO ;

Latch_DP_rocess process (CLK_In)

begin

if (Rising_Edge (CLK_In)) then

Done_Prog_Bar <= D1 ;

end if ;

end process ;

Tri State Process : process (FeedBack_Done_Prog)

begTn

if (FeedBack Done_Prog = 'i) then

Done_Prog_T_istate <= '0'

else

Done_Prog_Tristate <= 'Z'

end if ;

end process ;

36

end PAL22V Behaviour ;

-- File Name: FIFO E.VHD

-- Host Machine: GATEWAY 486/33 (IBM AT Clone)

-- Target Machine: GATEWAY 486/33 (IBM AT Clone)

-- Environment : Model Technology VHDL Simulation for Windows (Vet 4.3f)

-- DOS Version 6.2

-- Organization: NASA-LaRC

-- Project: Fly By Light - Power By Wire (FBL-PBW)

-- Author: Mahyar R. Malekpour

-- Creation Date: 7/22/1996

-- Name/Number:

-- FIFO (entity)

-- Abstract:

-- This file contains the entity declaration for a generic FIFO.

-- It conforms with the FIFO chip used in our board, i.e., AM???

-- SIGNAL DEFINITION :

-- Full_Flag_Bar -- active low,

-- Empty_Flag -- active high,

-- HF_Flag_Bar -- active low,

-- Acronyms/Abbreviations:

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on: ??/??/96

-- by: Mahyar Malekpour

'i' ==> not full, '0' ==> full

'0' ==> empty, 'i' ==> not empty

'i' ==> not half full, '0' ==> half full

library IEEE ;

use IEEE.std_logic_l164.all ;

entity FIFO is

generic (

Period

Depth

Width

time := i00 ns ;

natural := i0 ; -- 2 K for now

natural := 7) ; -- 8-bit Byte

port (

Data In

Data Out

Reset Bar

Read Bar

Write Bar

Full_Flag_Bar

Empty_Flag

HF_Flag_Bar

in std_logic_vector (Width downto 0) ;

out std_logic_vector (Width downto 0) := "ZZZZZZZZ" ;

in

in

in

std_logic ; -- := 'i' ;

std_logic ; -- := 'i' ;

std_logic ; -- := 'i' ;

out std_logic ; -- active low

out std_logic ; -- active high

out std_logic -- active low

) ;

end FIFO ;

-- File Name: FIFO A.VHD

37

-- Host Machine:

-- Target Machine:

-- Environment :

-- Organization:

-- Project:

-- Author:

-- Creation Date:

GATEWAY 486/33 (IBM AT Clone)

GATEWAY 486/33 (IBM AT Clone)

Model Technology VHDL Simulation for Windows (Vet 4.3f)

DOS Version 6.2

NASA-LaRC

Fly By Light - Power By Wire (FBL-PBW)

Mahyar R. Malekpour

7/22/1996

-- Name/Number:

-- FIFO (entity)

-- 71_bstract:

-- This file contains the entity declaration for a generic FIFO.

-- It conforms with the FIFO chip used in our board, i.e., AM???

-- SIGNAL DEFINITION :

-- Full_Flag_Bar -- active low,

-- Empty_Flag -- active high,

-- HF_Flag_Bar -- active low,

-- Acronyms/Abbreviations:

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on: 8/9/96

-- by: Mahyar Malekpour

-- Fine tuned a bit more today.

'i' ==> not full, '0' ==> full

'0' ==> empty, 'i' ==> not empty

'i' ==> not half full, '0' ==> half full

library IEEE ;

use IEEE.std_logic_l164.all ;

use ieee.std_logic_arith.all ;

use work.my_std_logic_arith.all ;

architecture FIFO Behave of FIFO is

type Memory is array (0 to Depth - i) of integer ;

signal FIFO_Memory : Memory ;

begin

variable Delay

variable Count

variable Read Ptr

variable Write Ptr

process (Read_Bar, Write_Bar, Reset_Bar)

time := Period / 3 ;

natural range 0 to Depth := 0 ;

natural range 0 to Depth := 0 ;

natural range 0 to Depth := 0 ;

variable TEMP

begin

integer := 0 ;

if (Read_Bar = 'i') and (Write_Bar = 'i') and (Reset_Bar = '0') then

Write Ptr := 0 ;

Read Ptr := 0 ;

Coun_ := 0 ;

Full_Flag_Bar <= 'i' after Delay ;

Empty_Flag <= '0' after Delay ;

HF_Flag_Bar <= 'i' after Delay ;

Data Out <= "ZZZZZZZZ" ; -- a must here

38

elsif (Reset Bar = 'i') then

if (Falling_Edge (Write_Bar) and

Count := Count + 1 ;

TEMP := To_Integer (Data_In) ;

FIFO_Memory (Write_Ptr) <= TEMP

Count < Depth)) then

Write Ptr := (Write Ptr + 1) mod Depth ;

end if ;

if (Falling_Edge (Read Bar) and (Count > 0)) then

TEMP := FIFO_Memory (Read Ptr) ;

Data_Out <= To_StdLogicVec_or (TEMP, 8 after i0 ns ;

Count := Count - 1 ;

Read Ptr := (Read Ptr + 1) mod Depth

elsif Rising_Edge (Read_Bar) then

Data Out <= "ZZZZZZZZ" after i0 ns ; -- a must

end if ;

if (Count = 0) then

Empty_Flag <= '0' after Delay ;

else

Empty_Flag <= 'i' after Delay ;

end if ;

if (Count >= Depth) then

Full_Flag_Bar <= '0' after Delay ;

else

Full_Flag_Bar <= 'i' after Delay ;

end if ;

if (Count >= Depth 2) then

HF_Flag_Bar <= '0' after Delay ;

else

HF_Flag_Bar <= 'i' after Delay ;

end if ;

end if ;

end process ;

end FIFO Behave ;

-- File Name: XC3020 E.VHD

-- Host Machine: GATEWAY 486/33 (IBM AT Clone)

-- Target Machine: GATEWAY 486/33 (IBM AT Clone)

-- Environment : Model Technology VHDL Simulation for Windows (Vet 4.3f)

-- DOS Version 6.2

-- Organization: NASA-LaRC

-- Project: Fly By Light - Power By Wire (FBL-PBW)

-- Author: Mahyar R. Malekpour

-- Creation Date: 3/19/96

-- Name/Number:

-- XC3020 (entity)

-- /zbstract:

-- This file contains the entity declaration for the PC interface and part

-- of the BIU that will be programmed on a Xilinx XC3020.

-- SIGNAL DEFINITION :

-- Acronyms/Abbreviations:

-- FBL/PBW

-- BIU - Bus Interface Unit

-- Dependencies:

-- IEEE.STD LOGIC 1164

39

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

Modified on: 3/25/1996

by: Mahyar Malekpour

Added Chip_Select_Bar signal to the entity.

Modified on: 4/9/1996

by: Mahyar Malekpour

It is needed in the XC4000.

-- Added CCLK 4000, Din_4000, Prog 4000, INIT 4000, and DONE 4000 signals

-- to the entity. They are used for--programming of the XC4000--in both the

-- slave serial mode and parallel periferal mode.

-- Modified on: 6/7/1996

-- by: Mahyar Malekpour

-- Added Direction signal to the entity to control flow of data thru 74LS245

-- bidirectional buffer that connects uP Data bus to the XC3020. The dehault

-- value of Direction signal is high, i.e., uP is writing, otherwise low only

-- when uP is reading from ports within the xc3020.

library IEEE ;

use IEEE.std_logic_l164.all ;

use WORK.CNSTNT P.all ;

entity XC3020 is

port (

-- the following 4 signals are not

-- 3/19/96
-- RESET

-- CLK In

-- SerTal_Prog_In

-- Done_Prog_Bar

Reset BIU

Direc[ion

Data Read Bar

Data--Write Bar

-- This signal is added

-- Mahyar 3/25/1996

Chip_Select_Bar

ADDRESS

AEN Bar

IOWR Bar

IORD Bar

uP Data In Out

FIFO Data In Out

Input_FIFO_Reset Bar

Input FIFO Read Bar

Input[FIFO[Write_Bar

Input FIFO Full Bar

Input_FZFO_Empty_Bar

Input_FIFO HF Bar

Output_FIFO_Reset Bar

Output FIFO Read Bar

Output[FIFO[Write_Bar

Output FIFO Full Bar

Output_FZFO_Empty_Bar

Output_FIFO HF Bar

BIU FIFO Read Bar

BIU--FIFO--Write Bar

CCLK 4000

Prog_4000

synthesizable and so are commented out.

: in std_logic ; -- Power on reset, active high

: in std_logic ;

: in std_logic ;

: in std_logic ;

out std_logic ;

out std_logic ;

out std_logic ;

out std_logic ;

because it is needed in the XC4000

out std_logic ;

in

in

in

in

std_logic_vector (9 downto 0) ;

std_logic ; -- Address enable, active high

std_logic ;

std_logic ;

inout std_logic_vector (Data_Length downto 0) ;

inout std_logic_vector (Data_Length downto 0) ;

out std_logic

out std_logic

out std_logic

in std_logic

in std_logic

in std_logic

out std_logic

out std_logic

out std_logic

in std_logic

in std_logic

in std_logic

in std_logic

in std_logic

out std_logic

out std_logic

4O

INIT 4000

DONE 4000

) ;

• in std_logic ;

• in std_logic

end XC3020 ;

-- File Name: XC3020 A.VHD

-- Host Machine: GATEWAY 486/33 (IBM AT Clone)

-- Target Machine: GATEWAY 486/33 (IBM AT Clone)

-- Environment : Model Technology VHDL Simulation for Windows (Vet 4.3f)

-- DOS Version 6.2

-- Organization: NASA-LaRC

-- Project: Fly By Light - Power By Wire (FBL-PBW)

-- Author: Mahyar R. Malekpour

-- Creation Date: 3/19/96

-- Name/Number:

-- XC3020 (architecture)

-- /zbstract:

-- This file contains the architecture for the PC interface and part

-- of the BIU that will be programmed on a Xilinx XC3020.

-- SIGNAL DEFINITION :

-- Acronyms/Abbreviations:

-- FBL/PBW

-- BIU - Bus Interface Unit

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on: 4/9/1996

-- by: Mahyar Malekpour

-- Modified the entities to reflect the newly added XC4000 related signals•

-- Modified on: 6/7/1996

-- by: Mahyar Malekpour

-- Modified the entities to reflect the newly added Direction signal•

library IEEE ;

use IEEE.std_logic_l164.all ;

use WORK.CNSTNT P.all ;

architecture XC3020 Behave of XC3020 is

component INTRFC

port (

Reset BIU

Direction

Data Read Bar

Data--Write Bar

Chip_Select_Bar

ADDRESS

IOWR Bar

IORD Bar

uP Data In Out

out std_logic

out std_logic

out std_logic

out std_logic

in std_logic

in

in

in

inout

-- chip select, active low

std_logic_vector (PORT_Length downto 0)

std_logic ;

std_logic ;

std_logic_vector (Data_Length downto 0)

4]

FIFO Data In Out

Input_FIFO_Reset Bar

Input FIFO Read Bar

Input_FIFO_Write_Bar

Input FIFO Full Bar

Input_FIFO_Empty_Bar

Input_FIFO HF Bar

Output_FIFO_Reset Bar

Output FIFO Read Bar

Output_FIFO_Write_Bar

Output FIFO Full Bar

Output_FIFO_Empty_Bar

Output_FIFO HF Bar

BIU FIFO Read Bar

BIU--FIFO--Write Bar

CCLK 4000

Prog_4000

INIT 4000

DONE 4000

) ;

end component ;

inout

out

out

out

in

in

in

out

out

out

in

in

in

in

in

out

out

in

in

std_logic_vector (Data_Length downto 0) ;

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

component uP PRT

port (

ADDRESS

AEN Bar

Chip_Se lect_Bar

) ;
end component ;

• in

• in

: out

std_logic_vector (9 downto 0) ;

std_logic ; -- Address enable, active high

std_logic -- chip select, active low

for all : INTRFC use entity work. INTRFC (INTRFC_Behaviour) ;

for all : uP_PRT use entity work.uP_PRT (uP_PRT_Behave) ;

-- for INTRFC

-- for uP PRT

signal ChTp_Select : std_logic ;

begin

U0 : INTRFC port map (Reset BIU, Direction, Data_Read_Bar,

Data Write Bar, Chip_Select,

ADDRESS (PORT_Length downto 0),

IOWR_Bar, IORD_Bar, uP_Data In Out,

FIFO Data In Out,

Input_FIFO_Reset_Bar, Input_FIFO_Read_Bar,

Input_FIFO_Write_Bar,

Input_FIFO_Full_Bar, Input_FIFO_Empty_Bar,

Input_FIFO HF Bar,

Output FIFO Reset Bar, Output_FIFO_Read_Bar,

Output_FIFO_Write_Bar,

Output_FIFO_Full_Bar, Output_FIFO_Empty_Bar,

Output_FIFO HF Bar,

BIU_FIFO_Read_Bar, BIU_FIFO_Write_Bar,

CCLK_4000, Prog_4000, INIT_4000, DONE_4000) ;

U1 : uP_PRT port map (ADDRESS, AEN_Bar, Chip_Select) ;

-- Send it out to the XC4000 as well

Chip_Select_Bar <= Chip_Select ;

end XC3020 Behave ;

42

-- File Name:

-- Host Machine:

-- Target Machine:

-- Environment :

-- Organization:

-- Project:

-- Author:

-- Creation Date:

INTRFC E.VHD

GATEWAY 486/33 (IBM AT Clone)

GATEWAY 486/33 (IBM AT Clone)

Model Technology VHDL Simulation for Windows (Vet 4.3f)

DOS Version 6.2

NASA-LaRC

Fly By Light - Power By Wire (FBL-PBW)

Mahyar R. Malekpour

10/24/95

-- Name/Number:

-- INTRFC (entity)

-- Abstract:

-- This file contains the entity declaration for the PC interface that will

-- be programmed on a Xilinx XC3000.

-- SIGNAL DEFINITION :

-- Acronyms/Abbreviations:

-- FBL/PBW

-- BIU - Bus Interface Unit

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on: 10/24/95

-- by: Mahyar Malekpour

-- i. A head count of the I/O pins (as of now) :

-- 41 I/O pins needed:

-- 18 for two FIFOs, 8 data lines, i0 address lines, 3 control lines

-- (AEN, IOWR, and IORD), and 2 from the two FIFOs.

-- XC300 provides us with 54 I/O pins,

-- Therefore, our PC interface should fit inside one XC3000, but the BIU

-- will not! The BIU will require, at least, 18 I/O pins for the two FIFOs

-- interface in addition to its other I/O pins.

-- Modified on: 3/12/96

-- by: Mahyar Malekpour

-- i. Bring in the half-full flags of the FIFOs. Two more I/O pins used.

-- Modified on: 3/19/96

-- by: Mahyar Malekpour

-- Modified on: 6/7/1996

-- by: Mahyar Malekpour

-- Modified the entities to reflect the newly added Direction signal.

library IEEE ;

use IEEE.std_logic_l164.all ;

use WORK.CNSTNT P.all ;

entity INTRFC is

port (

-- the following 4 signals are not synthesizable and so are commented out.

-- 3/19/96

-- RESET : in std_logic ; -- Power on reset, active high

-- CLK In : in std_logic ;

-- Ser_al_Prog_In : in std_logic ;

-- Done_Prog_Bar : in std_logic ;

Reset BIU : out std_logic ;

Direction : out std_logic ;

43

Data Read Bar

Data--Write Bar

Chip_Select_Bar

ADDRESS

IOWR Bar

IORD Bar

uP Data In Out

FIFO Data In Out

Input_FIFO_Reset Bar

Input FIFO Read Bar

Input_FIFO_Write_Bar

Input FIFO Full Bar

Input_FIFO_Empty_Bar

Input_FIFO HF Bar

Output_FIFO_Reset Bar

Output FIFO Read Bar

Output_FIFO_Write_Bar

Output FIFO Full Bar

Output_FIFO_Empty_Bar

Output_FIFO HF Bar

BIU FIFO Read Bar

BIU--FIFO--Write Bar

CCLK 4000

Prog_4000

INIT 4000

DONE 4000

out std_logic ;

out std_logic ;

in

in

in

in

inout

inout

std_logic ; -- chip select, active low

std_logic_vector (PORT_Length downto 0)

std_logic ;

std_logic ;

std_logic_vector (Data_Length downto 0)

std_logic_vector (Data_Length downto 0)

out std_logic

out std_logic

out std_logic

in std_logic

in std_logic

in std_logic

out std_logic

out std_logic

out std_logic

in std_logic

in std_logic

in std_logic

in std_logic

in std_logic

out std_logic

out std_logic

in std_logic

in std_logic

) ;

end INTRFC ;

-- File Name: INTRFC A.VHD

-- Host Machine: GATEWAY 486/33 (IBM AT Clone)

-- Target Machine: GATEWAY 486/33 (IBM AT Clone)

-- Environment : Model Technology VHDL Simulation for Windows (Vet 4.3f)

-- DOS Version 6.2

-- Organization: NASA-LaRC

-- Project: Fly By Light - Power By Wire (FBL-PBW)

-- Author: Mahyar R. Malekpour

-- Creation Date: 10/24/95

-- Name/Number:

-- INTRFC (architecture)

-- /zbstract:

-- This file contains the architecture for the PC interface that will

-- be programmed on a Xilinx XC3000.

-- SIGNAL DEFINITION :

-- Acronyms/Abbreviations:

-- FBL/PBW

-- BIU - Bus Interface Unit

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- WORK.CNSTNT P.all

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

44

-- Modified on: 11/22/95

-- by: Mahyar Malekpour

-- Declared a constant, Xilinx_Delay, to reflect and study the effect of

-- inherent propagation delay in the Xilinx 3000. The preliminary resuts

-- indicate that we may have some timing problem while fetching, i.e.

-- reading, data from the Output_FIFO.

-- Xilinx_Delay = 30 ===> it works

-- Xilinx_Delay = 40 ===> it doesn't work

-- Need to study this futher.

-- Modified on: 11/27/95

-- by: Mahyar Malekpour

-- Modified the code to overcome the timing problems associated with the

-- propagation delay imposed by the Xilinx FPGA. While reading data from

-- the FIFO, the bidirectional bus is now controlled directly by the

-- IORD Bar signal. With this arrangement, the data bus will not be driven

-- by the FIFOs when the bus is to be tri-stated. The time period where the

-- IORD Bar is active, when low, has to be long enogh to account for the

-- Xilinx delay as well as FIFO response time. This time is about >= 70 ns.

-- Modified on: 11/30/95

-- by: Mahyar Malekpour

-- Modified the BIU Read Write FIFO process to emulate activities of the

-- BIUs. See notes by the--BIU Read Write FIFO process.

Modified on: 3/12/96

by: Mahyar Malekpour

Modified on: 3/28/96

by: Mahyar Malekpour

Added 4 new signals to this module:

Reset_BIU, uP Data Pin 5, uP Data Pin 6, uP Data Pin 7

-- These signal are send out--for--possible future use Tn other parts of the

-- BIU. With this addition, all bits of the uP data bus are used when the

-- uP addresses the "reset" port. Thus, the uP can, thru software,

-- selectively and/or collectively reset parts or all of the system.

-- uP Data In Out (0) : reset input FIFO

-- uP Data In Out (i) : reset output FIFO

-- uP Data In Out (2) : input FIFO write and output FIFO read

-- uP Data In Out (3) : output FIFO write and input FIFO read

-- uP Data In Out (4) : reset BIU, i.e., global reset

-- uP Data In Out (5) : Not used

-- uP Data In Out (6) : Not used

-- uP Data In Out (7) : Not used

-- Modified on: 4/1/96

-- by: Mahyar Malekpour

-- Latched the reset commands written to the Command ADDRESS from the uP

-- data bus into an internal register, Latched_Command, for futher use.

-- Modified on: 4/16/96

-- by: Mahyar Malekpour

-- The bit 4 of the latched command is used as a global reset to the BIU,

-- and hence is named Reset BIU. When high, the BIU and the FIFOs are reset.

-- Since it is latched, it must be lowered after some time interval for the

-- normal operations to resume.

-- Modified on: 4/19/96

-- by: Mahyar Malekpour

-- Simplified the code and got rid of the previous modifications.

-- Modified on: 5/2/96

-- by: Mahyar Malekpour

-- Added the last segment to the bus so data can be written to and read from

-- the XC4000 via the same bus that is used to access the two FIFOs. Thus,

-- this bus, FIFO Data In Out bus, is being driven from five directions and

-- thru three por_s. This bus is also used to program the XC4000 via the

-- XC3020 in the parallel synchronous prepheral mode.

45

Data port:

i. read FIFO Out

2. write FIFO In

PROG 4000 port

3. program XC4000

4000 Status port

4 read BIU status

5 write schedule to RAM

Modified on 6/7/1996

by: Mahyar Malekpour

-- Modified the entities to reflect the newly added Direction signal.

-- Modified on: 8/27/96

-- by: Mahyar Malekpour

-- Once again there is a need to individually reset the FIFOs and

-- independely from the BIU. Therefore, using the same old "reset" port

-- the FIFOs and the BIU can now be reset thru the following data bits:

-- uP Data In Out (0) : reset input FIFO

-- uP Data In Out (i) : reset output FIFO

-- uP Data In Out (2) : Not used

-- uP Data In Out (3) : Not used

-- uP Data In Out (4) : reset BIU

-- uP Data In Out (5) : Not used

-- uP Data In Out (6) : Not used

-- uP Data In Out (7) : Not used

-- Thus, there is no such thing as global reset anymore.

-- Note: I have also inverted the Reset BIU input, i.e., data bit 4, to

-- be consistent with the FIFO reset inpu_ bits. MUST reflect this change

-- in the C/C++ code of the test-bench.

library IEEE ;

use IEEE.std_logic_l164.all ;

use WORK.CNSTNT P.all ;

architecture INTRFC Behaviour of INTRFC is

signal Latched_Command : std_logic_vector (Data_Length downto 0) ;

signal Data SELECTED Bar

signal -- FIFO Read

signal Status SELECTED Bar

signal -- Status Read

signal Command SELECTED Bar

signal PROG 4000 SELECTED Bar

signal -- PROG 4000 Read

std_logic ;

std_logic ;

std_logic ;

std_logic ;

std_logic ;

std_logic ;

std_logic ;

begin

-- This process decifers the incomming address bits and activates one of

-- the selected ports used in this module.

Check_Addresses : process Chip_Select_Bar, ADDRESS)

begin

Command SELECTED Bar <= 'i' ;

Data SELECTED BaT <= 'i' ;

Status SELECTED Bar <= 'i' ;

PROG 4000 SELECTED Bar <= 'i' ;

46

if (ADDRESS = Data ADDRESS) and (Chip_Select Bar = '0') then

-- Writing data t_ the FIFO In and reading da_a from the FIFO Out

Data SELECTED Bar <= '0' ;

elsif _ ADDRESS--= Status ADDRESS) and (Chip_Select Bar = '0') then

-- reading the FIFO-staus-register contents

Status SELECTED Bar <= '0' ;

elsif (ADDRESS =--Command ADDRESS) and (Chip_Select_Bar = '0') then

-- Resetting the BIU and the FIFOs

Command SELECTED Bar <= '0' ;

elsif (ADDRESS = PROG 4000 ADDRESS) and (Chip_Select Bar = '0') then

-- reseting and programming the XC4000 and reading XC4000 status

-- from the INIT and DONE signals. All thru the same port.

PROG 4000 SELECTED Bar <= '0' ;

end if ;

end process ;

-- Defining a bi-deirectional buffer for the data bus

-- The next two processes work together to define the bi-deirectional bus

uP_Read_FIFO_Status : process (FIFO_Read, Status_Read, PROG_4000_Read,

FIFO Data In Out, INIT_4000, DONE 4000,

Inpu__FIFO_Full_Bar, Input_FIFO_Empty_Bar, Input_FIFO HF Bar,

Output_FIFO_Full_Bar, Output_FIFO_Empty_Bar, Output_FIFO HF Bar)

begin

if (FIFO Read = '0') then

uP Data In Out <= FIFO Data In Out ;

elsif (Status Read = '0 T) then

uP Data In Out (0) <= Input FIFO Full Bar ;

uP Data In Out (i) <=

uP Data In Out (2) <=

uP Data In Out (3) <=

uP Data In Out (4) <=

uP Data In Out (5) <=

uP Data In Out (6) <=

uP Data In Out (7) <=

elsif--(PROG 4000 Read =

uP Data In Out--(0) <=

uP Data In Out (i) <=

uP Data In Out (2) <=

uP Data In Out (3) <=

uP Data In Out (4) <=

uP Data In Out (5) <=

uP Data In Out (6) <=

uP Data In Out (7) <=

else

uP Data

end Tf ;

Input--FIFO--Empty_Bar ;

Input_FIFO HF Bar ;

Output FIFO Full Bar ;

Output--FIFO--Empty_Bar ;

Output_FIFO HF Bar ;

'0' ;

'0' ;

'0 ') then

INIT 4000 ;

DONE 4000 ;

0 ;

0 ;

0 ;

0 ;

0 ;

0 ;

In Out <= "ZZZZZZZZ" ;

end process ;

uP Write FIFO : process (Data_SELECTED_Bar, uP Data In Out,

-- -- PROG 4000 SELECTED BaT)

begin

if ((Data SELECTED Bar = '0') or (PROG 4000 SELECTED Bar = '0')) then

FIFO Date In Out <= uP Data In Out ;

else

FIFO Data In Out <= "ZZZZZZZZ" ;

end if ;

end process ;

Latch Command : process (Command_SELECTED_Bar, uP Data In Out, IOWR Bar)

begin-- -- --

if (Command SELECTED Bar = '0') and (IOWR Bar = '0') then -- Latch in the uP data bus.

Latched Command <= uP Data In Out ;

end if ;

end process ;

-- Time to reset the BIU

47

Reset BIU <= not Latched Command (4) ;

-- The buffer should transfer data to the uP data bus whenever uP attempts

-- to read any port in the XC3020 and xc4000.

-- 6/7/1996 Mahyar Malekpour

Direction <= IORD_Bar or Chip_Select_Bar ;

-- Time to reset the FIFOs

-- 8/27/96
Input FIFO Reset Bar <= Latched Command (0) ;

Output_FIFO_Reset_Bar <= Latched_Command (i) ;

-- Send the rest of the data bus out for future use in other

-- parts of the BIU.

-- Mahyar 3/28/1996

Prog_4000 <= Latched Command (5) ;

Data Read Bar <= Latched Command (6) ;

Data--Write Bar <= Latched--Command (7) ;

-- Time to read or write to the FIFOs

FIFO Read <= IORD Bar or Data SELECTED Bar ;

-- Time to read the FIFOs status

Status Read <= IORD Bar or Status SELECTED Bar ;

-- Time to grogram the XC4000

PROG 4000 Read <= IORD Bar or PROG 4000 SELECTED Bar ;

CCLK 4000 <= IOWR Bar or PROG 4000 SELECTED Bar ;

-- This process processes all selected commands for reading and writing

-- to the I/O ports. It also initializes the signals at the power on.

Command Process : process (Data SELECTED Bar, Latched_Command,

-- IORD_Bar, IOWR_Bar, Status_SELECTED_Bar,

PROG 4000 SELECTED Bar

begin

-- Time to reset the system

-- if (Latched Command (4) = '0') then -- i.e. if Reset BIU is low

-- 8/27/96
if (Latched Command (0) = '0') then -- i.e. if reset input FIFO

-- The fol_owing 2 signals need to be high during the reset process

-- therefore, they can be tied and controled by a single data line.

Input_FIFO_Write_Bar <= 'i' ;

elsif (Latched Command (i) = '0') then -- i.e. if reset output FIFO

Output_FIFO_Read_Bar <= 'i' ;

else

Input FIFO Write Bar <= IOWR Bar or Data SELECTED Bar ;

Output_FIFO_Read,Bar <= IORD_Bar or Data_SELECTED_Bar ;

end if ;

end process ;

BIU Read Write FIFO : process (Latched Command,

-- -- -- BIU_FIFO_Write_Bar, BIU_FIFO_Read_Bar)

begin

-- if (Latched Command (4) = '0') then -- i.e. if Reset BIU is low

-- 8/27/96
if (Latched Command (0) = '0') then -- i.e. if reset input FIFO

-- The fol_owing 2 signals need to be high during the reset process

-- therefore, they can be tied and controled by a single data line.

Input_FIFO_Read_Bar <= 'i' ;

elsif (Latched Command (i) = '0') then

Output_FIFO_Write_Bar <= 'i' ;

-- i.e. if reset output FIFO

else

-- BIU is reading from the Input_FIFO

Input_FIFO_Read_Bar <= BIU_FIFO_Read_Bar ;

48

-- BIU is writing to the Output_FIFO

Output_FIFO_Write_Bar <= BIU_FIFO_Write_Bar ;

end if ;

end process ;

end INTRFC Behaviour ;

-- File Name: uP PRT E.VHD

-- Host Machine: GATEWAY 486/33 (IBM AT Clone)

-- Target Machine: GATEWAY 486/33 (IBM AT Clone)

-- Environment : Model Technology VHDL Simulation for Windows (Vet 4.3f)

-- DOS Version 6.2

-- Organization: NASA-LaRC

-- Project: Fly By Light - Power By Wire (FBL-PBW)

-- Author: Mahyar R. Malekpour

-- Creation Date: 3/19/96

-- Name/Number:

-- uP PRT (entity)

-- /zbstract:

-- This file contains the entity declaration for the interface part of

-- the PC. It simply decodes the address, using only the upper bits, and

-- generats a chip select signal to activate the BIU and uP interactions.

-- This entity is to be programmed on a Xilinx XC3020.

-- SIGNAL DEFINITION :

-- Acronyms/Abbreviations:

-- FBL/PBW

-- BIU - Bus Interface Unit

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on: ??/??/1996

-- by: Mahyar Malekpour

library IEEE ;

use IEEE. std_logic_l164, all

use WORK.CNSTNT P.all ;

entity uP PRT is

port

ADDRESS

AEN Bar

Chip_Se lect_Bar

) ;

end uP PRT ;

in std_logic_vector (9 downto 0) ;

in std_logic ; -- Address enable, active high

out std_logic -- chip select, active low

-- File Name:

-- Host Machine:

uP PRT A.VHD

GATEWAY 486/33 (IBM AT Clone)

49

-- Target Machine:

-- Environment :

-- Organization:

-- Project:

-- Author:

-- Creation Date:

GATEWAY 486/33 (IBM AT Clone)

Model Technology VHDL Simulation for Windows (Ver 4.3f)

DOS Version 6.2

NASA-LaRC

Fly By Light - Power By Wire (FBL-PBW)

Mahyar R. Malekpour

3/19/96

-- Name/Number:

-- uP PRT (architeture)

-- Abstract:

-- This file contains the entity declaration for the interface part of

-- the PC. It simply decodes the address, using only the upper bits, and

-- generats a chip select signal to activate the BIU and uP interactions.

-- This entity is to be programmed on a Xilinx XC3020.

-- SIGNAL DEFINITION :

-- Acronyms�Abbreviations:

-- FBL/PBW

-- BIU - Bus Interface Unit

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- CNSTNT P

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on: ??/??/??

-- by: Mahyar Malekpour

library IEEE ;

use IEEE.std_logic_l164.all ;

use WORK.CNSTNT P.all ;

architecture uP PRT Behave of uP PRT is

begin

Check Addresses : process (ADDRESS, AEN Bar)

begin--

if (ADDRESS (9 downto (PORT_Length + i)) = BASE_ADDRESS) then

Chip_Select_Bar <= AEN_Bar ;

else

Chip_Select_Bar <= 'i' ;

end if ;

end process ;

end uP PRT Behave ;

-- File Name:

-- Host Machine:

-- Target Machine:

-- Environment :

-- Organization:

-- Project:

-- Author:

-- Creation Date:

XC4005 E.VHD

GATEWAY 486/33 (IBM AT Clone)

GATEWAY 486/33 (IBM AT Clone)

Model Technology VHDL Simulation for Windows (Ver 4.3f)

DOS Version 6.2

NASA-LaRC

Fly By Light - Power By Wire (FBL-PBW)

Mahyar R. Malekpour

6/10/1996 based on xc4000 created on 03/22/96

5O

(entity)

This file contains the entity declaration for the FBL/PBW fault-tolerant

architecture BIU.

-- Name/Number:

-- XC4005

-- Abstract:

-- SIGNAL DEFINITION :

-- BIU ID

-- S In

-- S Out

-- R_set BIU

FIFO Data In

FIFO Read Bar

FIFO Data Out

FIFO--Write Bar

Chip_Selec__Bar

BIU Reset

ROM Data

ROM Read bar

ROM--hODR_SS
Clo_k In

Clock Out

• BIU ID

: Serial data into BIU

: Serial data out of BIU

• asserted by peripheral microprocessor to reset BIU, active high

This signal is active high because the Flip-Flops in

Xilinx 4000 require high for "clr".

: 8-bit data from FIFO In into BIU

: triggers reading from the input FIFO, FIFO_In, active low

: 8-bit data out of BIU to FIFO Out

: triggers writing to the outpu_ FIFO, FIFO_Out, active low

: active low, used by uProcessor to select BIU for

uProcessor access•

• reset line to BIU from uProcessor, active low

• data lines from EPROM

: active low, read line to EPROM.

• address lines to EPROM

: Input clock to the BIU = Bit clock

: Output clock of the BIU = Byte clock

-- Acronyms/Abbreviations:

-- FBL/PBW

-- BIU - Bus Interface Unit

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on: 3/27/96

-- by: Mahyar Malekpour

-- Added "Reset BIU" signal to clear the 4-bit counter and reset it in a

-- known initial state. This signal is active high because the Flip-Flops

-- in Xilinx 4000 require high for "clr".

-- Modified on: 4/12/96

-- by: Mahyar Malekpour

-- Added three address lines so that I can transfer data between the FIFOs

-- on demand• Again, this is for intermediate step and for test purposes•

-- It will have to be modified later•

-- Modified on: 5/6/96

-- by: Mahyar Malekpour

-- Added the last segment of the FIFO Bus, FIFO Data In Out, that connects

-- XC4000 to XC3020 and thus to the uP. It all_ws read and write of data

-- to and from the XC4000 status registers as well as the adjoining RAM

-- that holds the schedule of events. This segment of the bus MUST be

-- tri-stated when not in use as other segments are. Two new signals,

-- Data Read Bar and Data_Write_Bar, were also added for the correspong

-- operation-to be controlled by the uP.

-- Modified on: 8/22/96

-- by: Mahyar Malekpour

-- Added Switch Time In and INTRPT Out to this entity.

-- Switch Time In is--provided to gTve the user more control over the switch time.

-- INTRPT Out is used to let the uP know a new cycle started.

-- Modified on: 8/27/96

-- by: Mahyar Malekpour

-- Added INTRPT ACK In to this entity.

5]

-- INTRPT ACK In is used to let the BIU know that the uP has serviced the

-- interrupt.

-- Modified on: 9/4/96

-- by: Mahyar Malekpour

-- Added MUX Select to this entity.

-- _
....................................

library IEEE ;

use iEEE.std_logic_l164.all ;

use WORK.CNSTNT_P.all ;

use WORK.EPROM_P.all ;

entity XC4005 is

PORT (

BIU OR RMU

BIUID

S In

S Out

Reset BIU

Chip_Select_Bar

FIFO_Data_In

inputFIFOReadBar

Input FIFO Full Bar

input_FIFO_Empty_Bar

input_FIFO HF Bar

FIFOData Out

Output_FIFO_Write Bar

Output FIFO Full Bar

Output_FIFO_ErmptyBar

Output_FIFO HF Bar

FIFOData In Out

Data Read Bar

Data_Write_Bar

Bit Clock In

Byte Clock_Out

ADDRESS

IOWRBar

IORD_Bar

Serial_Data_In

Serial_Data_Out

: in

: in

: in

: out

in

in

in

out

in

in

in

out

out

in

in

in

inout

in

in

: in

: out

in

in

in

in

out

std logic ;

std_logic_vector (Data_Length downto 0)

std_logic ;

stdlogic ;

stdlogic ;

stdlogic ;

std logic_vector (Data_Length downto 0)

stdlogic ;

std_logic ;

std_logic ;

std_logic ;

std_logic_vector (Data_Length downto O)

stdlogic ;

std_logic ;

stdlogic ;

stdlogic ;

std_logic vector (Data_Length downto 0)

std_logic

std_logic

std_logic

std_logic

std_logic_vector (PORT Length downto O) ;

std_logic ;

std_logic ;

std_logic ;

std_logic ;

-- the folowing signals are for test purposes only

-- get rid of them later

Latched Sync_Out : out std logic ;

ROM_Data

ROM Read Bar

ROM_Write_Bar

ROM ADDRESS

Switch_Time_In

INTRPT_Out

INTRPT ACK In

MUX Select

in std_logic vector (ROM WIDTH - 1 downto 0) ;

out std Logic ; -- := '0' ; -- active low

out std--Logic ; -- := '0' ; -- active low

out std_logic_vector (ROM ADDRESS_LINES - 1 downto 0) ;

in std logic_vector (2 downto 0) ; -- three bits for now

out std logic ;

in std logic ;

out std logic_vector (Data_Length downto 0)

) ;

end XC4005 ;

..

.. _

..

-- File Name: XC400S A.VHD

-- Host Machine: GATEWAY 486/33 (IBM AT Clone)

-- Target Machine: GATEWAY 486/33 (IBM AT Clone)

52

-- Environment :

-- Organization:

-- Project:

-- Author:

-- Creation Date:

Model Technology VHDL Simulation for Windows (Vet 4.3f)

DOS Version 6.2

NASA-LaRC

Fly By Light - Power By Wire (FBL-PBW)

Mahyar R. Malekpour

6/10/1996 based on xc4000 created on 03/22/96

-- Name/Number:

-- XC4005 (architecture)

-- Abstract:

-- This file contains the architecture for the FBL/PBW fault-tolerant

-- architecture BIU.

-- SIGNAL DEFINITION :

-- BIU ID • BIU ID

-- S In : Serial data into BIU

-- S Out : Serial data out of BIU

-- FIFO Data In : 8-bit data from FIFO In into BIU

-- FIFO_Read_Bar : triggers reading from the input FIFO, FIFO_In, active low

-- FIFO Data Out : 8-bit data out of BIU to FIFO Out

-- FIFO--Write Bar : triggers writing to the outpu_ FIFO, FIFO_Out, active low

-- Chip_Selec__Bar : active low, used by uProcessor to select BIU for uProcessor access.

-- BIU Reset • reset line to BIU from uProcessor, active ?

-- ROM Data • data lines from EPROM

-- ROM Read bar : active low, read line to EPROM.

-- ROM--ADDRESS • address lines to EPROM

-- Bit--Clock In : Input clock to the BIU = Bit clock

-- Byte_Clock_Out : Output clock of the BIU = Byte clock

-- Acronyms/Abbreviations:

-- BIU - Bus Interface Unit

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on: 5/20/96

-- by: Mahyar Malekpour

-- Added "Strobe" signal that is used to load in data from the FIFO In into

-- the p-to-s register. "Strobe" is active only for one bit clock cycle.

-- Modified on: 6/11/96

-- by: Mahyar Malekpour

-- Added P to S and S to P components.

-- Modified on: 6/12/96

-- by: Mahyar Malekpour

-- Added PSCON component.

-- Modified on: 6/17/96

-- by: Mahyar Malekpour

-- P to S entity operates on the NEGATIVE edge of the Bit_Clock,

-- S to P entity operates on the POSITIVE edge of the Bit_Clock,

-- and everything else operate on the POSITIVE edge of the Byte_Clock.

-- Modified on: 8/1/96

-- by: Mahyar Malekpour

-- Read Data Count added to read the first three bytes, input data packet header,

-- from--the Tnput FIFO. These three bytes are FF, BIU_ID, and Count respectively.

-- See notes in DATCLK A.VHD file.

-- Modified on: 8/2/96

-- by: Mahyar Malekpour

-- Registering the errors encountered in the designated bit position of the

-- Status_Reg_0.

53

-- Register Status_Reg_l is put a side for the micro-processor to write whatever

-- seemed necessay.

-- Modified on: 8/7/96

-- by: Mahyar Malekpour

-- Added Command_Data_Flag to make the most of the S to P Count. The S to P Count

-- is now treated as the command register while Command_Data_Flag is set high

-- and as a data byte counter when Command_Data_Flag is set low.

-- Modified on: 8/8/96

-- by: Mahyar Malekpour

-- Added four temporary buffers, Temp_l_Buffer thru Temp_4_Buffer, so that

-- the first three bytes of the data packet header will be around for the next

-- three Byte clocks. It is essential to keep these header bytes around for

-- sending them to the output FIFO after matching the BIU ID.

-- As a result, will have to FLUSH these buffers so tha_ all of the incomming

-- data bytes are transfered to the output FIFO. Thus, the total count is

-- +2 more than the number of data bytes in the incomming data packet.

-- Therefore, I increased the size of the S to P Count counter by one bit to

-- accomodate for the extra two dat bytes.

-- Modified on: 8/15/96

-- by: Mahyar Malekpour

-- Separating the Byte_Clock to handel the Sync_Detected.

-- Modified on: 8/22/96

-- by: Mahyar Malekpour

-- Added Switch Time In and INTRPT Out to this entity.

-- Switch Time In is--provided to gTve the user more control on the swutch time.

-- INTRPT Out is used to let the uP know a new cycle started.

library IEEE ;

--use IEEE.std_logic_l164.all ;

use WORK.CNSTNT P.all ;

use ieee.std_logic_arith.all ;

--use ieee.std_logic_signed. CONV_INTEGER ;

use work.my_std_logic_arith.all ;

architecture XC4005 Behave of XC4005 is

component BYTCLK

port (Reset BIU

Start_Cycle

Sync_Detected

Bit Clock In

Fixed_Byte_Clock_Out

Strobe Out

Variab_e_Byt e_Cl ock_Out

) ;

end component ;

component S to P

PORT (

Bit Clock In

SerTal Da_a In

Parallel Da_a Out

Mode Bit--Out --

in

in

out

) ;

end component ;

component P to S

PORT (

Bit Clock In

Parallel Data In

Mode Bit In

Load Parallel

Serial Data Out

in

in

in

in

out

in std_logic ;

in std_logic ;

in std_logic ;

in std_logic ;

out std_logic ;

out std_logic ;

out std_logic

out

std_logic ;

std_logic ;

std_logic_vector ((Data_Length_Plus_l) downto 0)

std_logic

std_logic ;

std_logic_vector (Data_Length downto 0) ;

std_logic ;

std_logic ;

std_logic

54

) ;

end component ;

component PSCON

port (

Load P TO S Count

Count Value

FIFO_Empty_Bar

Bit Clock

BYT_ CLOCK
Read FIFO Error

FIFO--RD bar

in

in

in

in

in

out

out

end component ;

component HEADER

port (

BIU OR RMU : in

Reset BIU : in

BIU ID : in

Mode Bit In : in

Data In : in

Byte Clock In : in

Sync_Detec_ed_Out : out

Command_Data_Flag : out

Load Counter Out : out

) ;

end component ;

component DATCLK

port (Reset BIU • in

Transmit Data : in

Byte Clock In : in

Coun_ Value Out : out

) ;
end component ;

component PRMCON

port (

BIU OR RMU

Reset BIU

Sync_Detected

Start_Cycle

BIU ID

Byte Clock In

Star_ Transmit

Start--Receieve

Status Data

Start Command

MUX Select

ROM Data

ROM Read Bar

ROM--Write Bar

ROM--ADDRESS

E PROM_Error_Flag

) ;
end component ;

STD LOGIC ;

std_logic_vector (Data_Length downto 0)

STD LOGIC

STD LOGIC

STD LOGIC

std_logic

STD LOGIC ;

component RECEVR

port (Reset BIU

Start_Cycle

Receieve Data

Byte Clo_k In

Load_Command_Reg

Start Receieve

Receive Error 1

Receive Error 2

Switch Time In

) ;

std_loglc ;

std_logic ;

std_logic_vector (Data_Length downto 0) ;

std_logic ;

std_logic_vector (Data_Length_Plus_l downto 0)

std_logic ;

std_logic ;

std_logic ;

std_logic

end component ;

std_logic ;

std_logic ;

std_logic ;

std_logic_vector (1 downto 0)

in std_logic ;

in std_logic ;

in std_logic ;

in std_logic ;

in std_logic_vector (Data_Length downto 0

in std_logic ;

out std_logic ;

out std_logic ;

out std_logic ;

out std_logic ;

out std_logic_vector (Data_Length downto 0)

in

out

out

out

out

in

in

in

in

in

out

out

out

in

std_logic_vector (ROM_WIDTH - 1 downto 0)

std_Logic ; -- := '0' ; -- active low

std_Logic ; -- := '0' ; -- active low

std_logic_vector (ROM_ADDRESS_LINES - 1 downto 0) ;

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic

std_logic_vector (2 downto 0) -- three bits for now

55

component STATUS

port (

BIU OR RMU • in

Reset BIU • in

Start_Cycle • in
BIU ID • in

Start Command : in

Start--Transmit : in

Data_Status_Flag : in

Data Mode Bit : in

FIFO Data In : in

Byte_Clock_In : in

Status_Reg_In : in

std_logic ;

std_logic ;

std_logic ;

std_logic_vector

std_logic ;

std_logic ;

std_logic ;

std_logic ;

std_logic_vector

std_logic ;

std_logic_vector

Transmit Data : out std_logic ;

Load_Byte_Out : out std_logic ;

Mode Bit Out : out std_logic ;

Data_Status_Out : out st d_logic_vect or

) ;
end component ;

Data_Length downto 0)

Data_Length downto 0)

Data_Length downto 0)

Data_Length downto 0)

for all : S to P use entity work. S to P (S to P Behave ;

for all : P to S use entity work. P to S (P to S Behave ;

for all : PSCON use entity work. PSCON (PSCON Behave)

for all : BYTCLK use entity work. BYTCLK (BYTCLK_Behave ;

for all : HEADER use entity work.HEADER (HEADER Behave) ;

for all : DATCLK use entity work.DATCLK (DATCLK Behave) ;

for all : PRMCON use entity work. PRMCON (PRMCON Behave) ;

for all : RECEVR use entity work.RECEVR (RECEVR Behave) ;

for all : STATUS use entity work.STATUS (STATUS Behave) ;

signal Output_Data_Buffer

signal Temp_l_Buffer

signal Temp_2_Buffer

signal Temp_3_Buffer

signal Temp_4_Buffer

signal Fixed_Byte_Clock

signal Variable_Byte_Clock

signal Strobe

signal Internal Read Bar

signal Internal Write--Bar

signal Write_A_Byte_Bar

signal Load_Byte_Out

std_logic_vector (Data Length Plus 1 downto 0)

std_logic_vector (Data_Length--down_o 0) ;

std_logic_vector (Data_Length downto 0) ;

std_logic_vector (Data_Length downto 0) ;

std_logic_vector (Data_Length downto 0) ;

: std_logic ; -- := 'i' ; -- divide by 9 clock

: std_logic ; -- := 'i' ; -- divide by 9 clock

• std_logic ; -- := 'i' ; -- Used to load p-to-s register

std_logic ; -- := 'i' ;

std_logic ; -- := 'i' ;

std_logic ; -- := 'i' ;

std_logic ; -- := 'i' ;

-- Mahyar 3/27/1996

signal COUNT : std_logic_vector (3 downto 0) ;

signal Status_Reg_0 : std_logic_vector (Data_Length downto 0)

signal Status_Reg_l : std_logic_vector (Data_Length downto 0)

signal Transfer_Bar : std_logic ;

Sync_Detected : std_logic

Mode Bit In : std_logic

Data Mode Bit : std_logic

Mode Bit--Out : std_logic

Parallel_Load : std_logic

Latched_Sync : std_logic

signal

signal

signal

signal

signal

signal

; -- := (others => '0') ;

; -- := (others => '0') ;

-- Check for 'i' for command and '0' for data

-- set to 'i' for command, '0' for data

-- set to 'i' for command, '0' for data

-- for internal use

-- These signals are drived and set based on the instructions that

-- are part of the schedule•

-- These signals need to be active only for one Fixed_Byte_Clock period•

signal Start Transmit : std_logic ;

signal Start_Cycle : std_logic ;

signal Start Receieve : std_logic ;

signal Transmit Data : std_logic ;

signal Receieve_Data : std_logic ;

signal Data_Status_Flag : std_logic ; -- 'i' for Data, '0' for Status

signal Start_Command : std_logic ;

56

-- The following signals are used to route the FIFO data and content of

-- status registers to the P to s conver module.

-- 8/26/96
signal Data_Status : std_logic_vector (Data_Length downto 0) ;

-- This signal is used to load the size of data packet into the

-- P to S Count counter.

-- This signal needs to be active only for one Byte_Clock period.

signal Load P to S Count : std_logic ;

-- Need to invert the Bit Clock

signal Invert_Bit_Clock_In : std_logic ;

signal Load_Command_Reg : std_logic ;

signal Command_Data_Flag : std_logic := '0' ;

-- Need these counters to count the number of expected data bytes in the

-- data packets.

signal P to S Count : std_logic_vector (Data_Length downto 0) ;

signal S to P Count : std_logic_vector (Data_Length_Plus_l downto 0)

-- This counter is used to load in the data packet header from the

-- Input FIFO. It is loaded with a value of 3 and counts down to 0.

signal Read_Data_Count : std_logic_vector (i downto 0) ;

-- data packet errors while reading and writing.

signal Read_FIFO_Error_l : std_logic ;

signal Read FIFO Error 2 : std_logic ;

signal Write FIFO_Err_r_l : std_logic ;

signal Write--FIFO Error_2 : std_logic ;

signal ReceTve_E_ror_l : std_logic ;

signal Receive_Error_2 : std_logic ;

signal EPROM_Error_Flag : std_logic ;

-- Software clock to be used for checking the timing of the scheduled events.

constant Timer_Length : integer := 2 * Data_Length_Plus_l ; -- 16 bits

constant Timer Limit : integer := 65536 ; -- 2 ** 16

signal --Timer : std_logic_vector (Timer_Length - 1 downto 0) := (others => '0

signal Timer_Error : std_logic ;

begin

U0

UI

U2

U3

U4

U5

U6

U7

U8

BYTCLK port map (Reset_BIU, Start_Cycle, Sync_Detected, Bit_Clock_In,

Fixed_Byte_Clock, Strobe, Variable_Byte_Clock) ;

S to P port map (Bit Clock_In, Serial_Data_In, Output_Data_Buffer,

Mode Bit In) ;

P to S port map (Invert Bit Clock In, Data_Status, Mode_Bit_Out, Parallel_Load,

Serial Data Out _ ;

PSCON port map (Load P to S Count, P to S Count, Input_FIFO_Empty_Bar,

Bit_Clock_In, Fixed_Byte_Clock, Read_FIFO_Error_2,

Internal Read Bar) ;

PRMCON port map (BIU OR RMU, Reset_BIU, Sync_Detected, Start_Cycle, BIU_ID,

Fixed_Byte_Clock, Start_Transmit, Receieve_Data, Data_Status_Flag

Start_Command, MUX_Select,

ROM_Data, ROM_Read_Bar, ROM_Write_Bar, ROM_Address, EPROM_Error_Flag

HEADER port map (BIU OR RMU, Reset_BIU, BIU_ID, Mode Bit In, Output_Data_Buffer,

Variable_Byte_Clock, Sync_Detected, Command_Data_Flag,

Load_Command_Reg) ;

DATCLK port map (Reset_BIU, Transmit_Data, Fixed_Byte_Clock, Read_Data_Count) ;

RECEVR port map (Reset_BIU, Start_Cycle, Receieve_Data, Variable_Byte_Clock,

Load_Command_Reg, Start_Receieve, Receive_Error_l,

Receive Error 2, Switch Time In) ;

STATUS port map (BIU OR RMU, Reset_BIU, Start_Cycle, BIU_ID, Start_Command,

57

Start_Transmit, Data Status_Flag, Data_Mode_Bit, FIFO_Data_In,

Fixed_Byte_Clock, Status_Reg_0, Transmit_Data, Load_Byte_Out,

Mode Bit Out, Data Status) ;

Byte_CLock_Out <= Fixed_Byte_Clock ;

Invert Bit Clock_In <= not (Bit_Clock_In) ;

Parallel_Load <= not (Internal_Read_Bar and Load_Byte_Out) and Strobe ;

Latched_Sync_Out <= Latched_Sync ;

Internal_Write_Bar <= (not Variable_Byte_Clock) or Write A Byte_Bar ;

-- Note: INTRPT_Out must be high for one Byte_Clock.

-- 8/28/96
INTRPT_Out <= Start_Cycle ; -- Let the uP know a new cycle started

-- This process stores the content of the incomming bit stream for future

-- use. It is essential to keep this data around for a few Byte_Clock

-- cycles. We need all the time we can get.

-- 8/2/96
-- The Temp_l_Buffer has to be loaded asynchronously to keep up with

-- possible changes and/or glitches in the incomming data bit stream.

-- 8/is/96
Load_Temp_Buffer process (Variable_Byte_Clock, Output_Data_Buffer,

Sync_Detected)

begin

if Rising_Edge Sync_Detected) then -- async load

Temp_l_Buffer <= Output_Data Buffer (Data_Length_Plus_l downto i) ;

elsif (Sync_Detected = '0') _hen -- a MUST.

if Rising_Edge (Variable_Byte_Clock) then

Temp_l_Buffer <= Output Data Buffer (Data_Length downto 0) ;

Temp_2_Buffer <= Temp l--Buffer ;

Temp_3_Buffer <= Temp 2 Buffer ;

Temp_4_Buffer <= Temp 3 Buffer ;

end if ;

end if ;

end process ;

-- This process latches the "Sync_Detected" signal to be used by the

-- "Check ID" state machine. The signal is latched using the negative

-- edge of the bit clock to avoid the timing problem that otherwise

-- may occure.

Latch_Sync_Detected : process

begin

wait until Falling_Edge (Bit_Clock_In) ;

Latched_Sync <= Sync_Detected ;

end process ;

-- This process deciphers the incomming address bits and activates one of

-- the selected ports used in this module.

Check_More_Addresses : process (Chip_Select_Bar, ADDRESS)

begin

Transfer Bar <= 'i' ;

if (ADDRESS = PORT ADDRESS 3) and (Chip_Select_Bar = '0') then

-- Transfering da_a from _he FIFO In to the FIFO Out

Transfer Bar <= '0' ;

end if ;

end process ;

58

Write FIFO Out : process -- (Internal_Write_Bar, Input_Data Buffer)

begin-- --

wait until Falling_edge (Internal_Write_Bar) ;

FIFO_Data_Out <= Temp_4_Buffer ;

end process ;

-- The initialization of the FIFO signals are not necessary here at this

-- time. But after implementing the global BIU reset in the hardware,

-- this process will make more sense. For now, however, this redundancy

-- here doesn't have any sideeffects.

-- Mahyar 4/1/1996

Reset_FIFO_Controls: process (Reset_BIU, Internal_Read_Bar,

Internal Write Bar)

begin

if (Reset BIU = '0') then

Input FIFO Read Bar <= Internal Read Bar ;

Outpu_ FIFO Write Bar <= Internal--Write Bar ;

else ----time--to reset the system. -- --

Input FIFO Read Bar <= 'i' ;

Output_FIFO_Write_Bar <= 'i' ;

end if ;

end process ;

-- The next two processes work together to define the bi-deirectional bus

uP Read XC4000 Status : process (Data_Read_Bar, Status_Reg_0)

begin --

if (Data Read Bar = '0') then

FIFO_Da_a In--Out <= Status_Reg_0 ;

else

FIFO Data In Out <= "ZZZZZZZZ" ;

end if--;

end process ;

uP Write XC4000 Status : process -- (Data_Write_Bar, Status_Reg_l)

begin --

wait until Rising_edge (Data Write_Bar) ;

Status_Reg_l <= FIFO_Data In Out ;

end process ;

-- Note: Load P to S Count need be active, i.e., high, for only a short

-- time of one Bit Clock Period.

-- 8/7/96

Read_Data_Header : process --(Fixed_Byte_Clock, Read Data_Count, FIFO Data_In,

-- Data_Mode_Bit, P to S Count, Load P to S Count)

begin

wait until Rising_Edge (Fixed_Byte_Clock) • -- ==> setup time is half Fixed_Byte_Clock

Read FIFO Error 1 <= '0' ;

Data--Mode--Bit <= '0' ; -- set to 'i' for command, '0' for data

Load P to S Count <= '0' ;

if (Transmit Data = 'i') then

P to S Coun_ <= "00000011" ; -- read the first three header bytes.

Load P to S Count <= 'i', '0' after Bit Clock Period ;

Data Mode Bit <= 'i' ; -- set to 'i' f_r command, '0' for data

else

if (Read Data Count = "ii") then

if (FIFO Da_a In = "iiiiiiii") then -- send out a sync-pattern

Data Mode Bi_ <= '0' ; -- set to 'i' for command, '0' for data

else -- Error in data packet format

P to S Count <= "00000000" ; -- stop reading from the FIFO.

Load P to S Count <= 'i', '0' after Bit Clock Period ;

Read FIFO Error 1 <= 'i' ; -- Raise the error flag.

end if ;

59

elsif (Read Data Count = "i0") then

if (BIU OR RMU--= 'i') then -- am I BIU?

if (FIFO_Data_In (Data_Length) = 'i') then

-- It is a command and it is an error

-- in data packet format and, thus, should be reported.

P to S Count <= "00000000" ; -- stop reading from the FIFO.

Load P to S Count <= 'i', '0' after Bit Clock Period ;

Read FIFO Error 1 <= 'i' -- Raise the error flag.

end if ;

end if ;

elsif (Read Data Count = "01" then

P to S Count <= FIFO Data In ; -- Now load the actual data count to be sent out.

Load P to S Count <= TI', TO' after Bit Clock Period ;

else -- reset all.

Load P to S Count <= '0' ;

P to S Count <= "00000000" ; -- initialize it to zeros.

end if ;

end if ;

end process ;

-- This process initiates writing of the incomming data packet to the

-- output FIFO after detecting a synch-pattern.

-- It keeps writing the incomming data bytes to the FIFO until the

-- S to P Count reaches zero. The assumption is that there are as many

-- as S to P Count CONSECUTIVE data bytes comming over the serial input

-- line.

-- 8/1/96

Write Out FIFO Process : process (Reset_BIU, Start Receieve, Variable_Byte_Clock,

-- -- -- S to P Count, WrTte_A_Byte_Bar)

variable TEMP : integer := 0 ;

begin

if (Reset BIU = '0') then

if Rising_edge (Start_Receieve) then

-- Synopsys vs Cadence

-- S to P Count <= Temp_l_Buffer + 3 ; -- 2 to flush the Temp_i_Buffer's

TEMP := To_integer (Temp_l_Buffer) ;

TEMP := TEMP + 3 ;

S to P Count <= To_StdLogicVector (TEMP, 9) ;

end if ;

if Falling_Edge (Variable_Byte_Clock

-- Synopsys vs Cadence

TEMP := To_integer (S to P Count) ;

-- TEMP := CONV SIGNED (S to P Count)

then

Write_A_Byte_Bar <= 'i'

Start_Cycle <= '0' ;

if (Command_Data_Flag = '0') then -- it is a count of data bytes

if (TEMP > 0) then

Write A Byte_Bar <= '0' ;

TEMP := TEMP - 1 ;

-- Synopsys vs Cadence

S to P Count <= To_StdLogicVector (TEMP, 9) ;

-- S to P Count <= CONV STD LOGIC VECTOR (TEMP, 9) ;

end if ;

else -- it is a command!?!?!?

-- Take the appropriate actions here and then reset the command/counter

-- register to zero to indicate end of operation.

Start_Cycle <= 'i' ; -- restart the schedule and the BIU

S to P Count <= "000000000" ;

end if ;

end if ;

6O

else -- time to reset the system.

Start_Cycle <= '0' ;

S to P Count <= "000000000" ;

Write_A_Byte_Bar <= 'i' ;

end if ;

end process ;

-- This process stores the type of errors encountered in their designated

-- bit positions.

-- 8/2/96

Register_Errors : process (Reset_BIU, Read_FIFO_Error_l, Read_FIFO_Error_2,

Receive_Error_l, Receive_Error_2, EPROM_Error_Flag)

begin

if (Reset BIU = 'i') then -- time to reset.

Status_Reg_0 <= "00000000" ;

else

if (Read FIFO Error 1 = 'i') then

Status_Reg_0--(0)--<= 'i' ;

elsif (Read FIFO Error 2 = 'i') then

Status_Reg_0 (T) <= 'i' ;

elsif (Receive Error 1 = 'i') then

Status_Reg_0 _ 2) _= 'i' ;

elsif (Receive Error 2 = 'i') then

Status_Reg_0 _ 3) _= 'i' ;

elsif (EPROM_Error_Flag = 'i') then

Status_Reg_0 (4) <= 'i' ;

end if ;

end if ;

end process ;

-- This process handels the software timer.

-- The Timer is reset whenever BIU is reset.

-- The Timer is reset whenever Start_Cycle is set.

-- 8/2o/96

Timer_Controller : process (Fixed_Byte_Clock, Reset_BIU, Start_Cycle)

variable TEMP : integer := 0

begin

-- Synopsys vs Cadence

TEMP := To_integer (Timer) ;

-- TEMP := CONV SIGNED (Timer) ;

if (Reset BIU = '0') and (Start_Cycle = '0') then

if Rising_Edge (Fixed_Byte_Clock) then

Timer Error <= '0' ;

if (TEMP >= Timer Limit) then

-- The schedule _ycle is too large for this Timer.

Timer Error <= 'i' ;

else

TEMP := TEMP + 1 ;

end if ;

end if ;

else -- time to reset the system.

Timer Error <= '0' ;

TEMP := 0 ;

end if ;

-- Synopsys vs Cadence

Timer <= To_StdLogicVector (TEMP, Timer_Length) ;

6]

Timer <= CONV STD LOGIC_VECTOR (TEMP, Timer_Length) ;

end process ;

end XC4005 Behave ;

-- File Name:

-- Host Machine:

-- Target Machine:

-- Environment :

-- Organization:

-- Project:

-- Author:

-- Creation Date:

S TO P E.VHD

GATEWAY 486/33 (IBM AT Clone)

GATEWAY 486/33 (IBM AT Clone)

Model Technology VHDL Simulation for Windows (Vet 4.3f)

DOS Version 6.2

NASA-LaRC

Fly By Light - Power By Wire (FBL-PBW)

Mahyar R. Malekpour

05/20/96

-- Name/Number:

-- XC4000 (entity)

-- Abstract:

-- This file contains the entity declaration for the serial to parallel

-- conversion process.

-- SIGNAL DEFINITION :

-- Acronyms/Abbreviations:

-- FBL/PBW

-- BIU - Bus Interface Unit

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on: 6/3/96

-- by: Mahyar Malekpour

library IEEE ;

use IEEE.std_logic_l164.all ;

use WORK.CNSTNT P.all ;

entity S TO P is

PORT (

Bit Clock In • in

SerTal Da_a In • in

Parallel Da_a Out : out

Mode Bit--Out -- : out

) ;

end S TO P ;

std_logic ;

std_logic ;

std_logic_vector ((Data_Length + i) downto 0)

std_logic

-- File Name:

-- Host Machine:

-- Target Machine:

-- Environment :

-- Organization:

S TO P A.VHD

GATEWAY 486/33 (IBM AT Clone)

GATEWAY 486/33 (IBM AT Clone)

Model Technology VHDL Simulation for Windows (Vet 4.3f)

DOS Version 6.2

NASA-LaRC

62

-- Project:

-- Author:

-- Creation Date:

Fly By Light - Power By Wire (FBL-PBW)

Mahyar R. Malekpour

05/20/96

-- Name/Number:

-- S TO P (architecture)

-- Abstract:

-- This file contains the architecture for the serial to parallel conversion

-- process.

-- SIGNAL DEFINITION :

-- Acronyms�Abbreviations:

-- BIU - Bus Interface Unit

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine�Compiler Dependencies:

-- Revisions:

-- Modified on: 6/3/96

-- by: Mahyar Malekpour

library IEEE ;

use IEEE.std_logic_l164.all ;

architecture S TO P Behave of S TO P is

component USLR

GENERIC (Gen_Data_Length : Natural := Data_Length + 1) ;

PORT (

Bit_Clock_In std_logic ;

Parallel Data In

Parallel Data Out

Load Parallel--

Mode Bit In

Serial Data In

Serial--Data--Out

in

in

out

in

in

in

out

std_logic_vector (Gen_Data_Length downto 0) ;

std_logic_vector (Gen_Data_Length downto 0) ;

std_logic ;

std_logic ;

std_logic ;

std_logic

) ;

end component ;

for all : USLR use entity work.USLR (USLR_Behave) ;

signal GND_I : std_logic_vector (Data_Length + 1 downto 0) := "000000000"

signal GND_2 : std_logic := '0' ;

begin

-- This process samples the incomming serail data bits using the falling

-- edge of the bit clock and stores them in the Output_Data Buffer.

-- Note: The first bit is assumed to be the Mode Bit and the next eight

-- bits the data byte with the MS bit comming in first.

UO : USLR port map (Bit_Clock_In, GND i, Parallel_Data_Out, GND_2, GND_2

Serial_Data_In, node Bit Out) ;

63

end S TO P Behave ;

-- File Name:

-- Host Machine:

-- Target Machine:

-- Environment :

-- Organization:

-- Project:

-- Author:

-- Creation Date:

USLR E.VHD

GATEWAY 486/33 (IBM AT Clone)

GATEWAY 486/33 (IBM AT Clone)

Model Technology VHDL Simulation for Windows (Vet 4.3f)

DOS Version 6.2

NASA-LaRC

Fly By Light - Power By Wire (FBL-PBW)

Mahyar R. Malekpour

0s/21/96

-- Name/Number:

-- SHFREG (entity)

-- /zbstract:

-- This file contains the entity declaration for the universal shift left

-- register with parallel in and parallel out as well as serail in and serial

-- out functionality. However, it only shifts left one bit at a time.

-- conversion process.

-- SIGNAL DEFINITION :

-- Acronyms/Abbreviations:

-- FBL/PBW

-- BIU - Bus Interface Unit

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on: 6/3/96

-- by: Mahyar Malekpour

-- Introduced the generic parameter "Gen_Data_Length" to make this entitiy

-- more versetile for future use in other modules. The default for this

-- parameter is the global constant "Data_Length".

library IEEE ;

use IEEE.std_logic_l164.all ;

use WORK.CNSTNT P.all ;

entity USLR is

GENERIC (Gen_Data_Length : Natural := Data_Length)

PORT (

Bit_Clock_In • in std_logic ;

Parallel Data In : in

Parallel Data Out : out

Load Parallel-- • in

std_logic_vector (Gen_Data_Length downto 0) ;

std_logic_vector (Gen_Data_Length downto 0) ;

std_logic ;

Mode Bit In • in

Serial Data In • in

Serial--Data--Out : out

std_logic ;

std_logic ;

std_logic

) ;

end USLR ;

64

-- File Name:

-- Host Machine:

-- Target Machine:

-- Environment :

-- Organization:

-- Project:

-- Author:

-- Creation Date:

USLR A.VHD

GATEWAY 486/33 (IBM AT Clone)

GATEWAY 486/33 (IBM AT Clone)

Model Technology VHDL Simulation for Windows (Vet 4.3f)

DOS Version 6.2

NASA-LaRC

Fly By Light - Power By Wire (FBL-PBW)

Mahyar R. Malekpour

0s/21/96

-- Name/Number:

-- USLR (architecture)

-- Abstract:

-- This file contains the entity declaration for the universal shift left

-- register with parallel in and parallel out as well as serail in and serial

-- out functionality. However, it only shifts left one bit at a time.

-- SIGNAL DEFINITION :

-- Acronyms/Abbreviations:

-- BIU - Bus Interface Unit

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on: 6/3/96

-- by: Mahyar Malekpour

-- Introduced the generic parameter "Gen_Data_Length" to make this entitiy

-- more versetile for future use in other modules. The default for this

-- parameter is the global constant "Data_Length".

library IEEE ;

use IEEE.std_logic_l164.all ;

--use WORK.CNSTNT P.all ;

--use ieee.std_logic_arith.all ;

architecture USLR Behave of USLR is

signal Input_Data_Buffer : std_logic_vector (Gen_Data_Length downto 0) ;

signal Mode_Bit : std_logic ;

begin

Parallel Data Out <= Input_Data_Buffer ;

Serial Data Out <= Mode Bit ;

-- This process can load in parallel data and serializes the data byte in

-- the Input_Data Buffer using the rising edge of the bit clock and sends

-- them out one bTt at a time at the rising edge.

-- This process can also load in serial data bits and send them out in

-- parallel.

Parallel To Serial To Parallel : process

variable Temp_Out : std_logic_vector (Gen_Data_Length downto 0) ;

begin

wait until Rising_Edge (Bit_Clock_In) ;

if (Load Parallel = 'i') then

Input_Data_Buffer <= Parallel_Data_In ;

65

Mode Bit <= Mode Bit In ;

else

-- Convert it to serial bits and send them out,

-- and load in serial bit.

Temp_Out := Input_Data_Buffer ;

Mode_Bit <= Input_Data_Buffer (Gen_Data_Length) ; -- MSB

for I in Gen_Data_Length downto 1 loop

Temp_Out (I) := Temp_Out (I - 1)

end loop ;

Temp_Out (0) := Serial_Data_In ;

Input_Data_Buffer <= Temp_Out ;

end if ;

end process ;

end USLR Behave ;

-- File Name:

-- Host Machine:

-- Target Machine:

-- Environment :

-- Organization:

-- Project:

-- Author:

-- Creation Date:

P TO S E.VHD

GATEWAY 486/33 (IBM AT Clone)

GATEWAY 486/33 (IBM AT Clone)

Model Technology VHDL Simulation for Windows (Vet 4.3f)

DOS Version 6.2

NASA-LaRC

Fly By Light - Power By Wire (FBL-PBW)

Mahyar R. Malekpour

05/20/96

-- Name/Number:

-- P TO S (entity)

-- Abstract:

-- This file contains the entity declaration for the serial to parallel

-- conversion process•

-- SIGNAL DEFINITION :

-- Acronyms�Abbreviations:

-- FBL/PBW

-- BIU - Bus Interface Unit

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on: ??/??/96

-- by: Mahyar Malekpour

library IEEE ;

use IEEE.std_logic_l164.all ;

use WORK.CNSTNT P.all ;

entity P TO S is

PORT (

Bit Clock In

Parallel Data In

• in

: in

std_logic ;

std_logic_vector (Data_Length downto 0) ;

66

Mode Bit In

Load Parallel

Serial Data Out

) ;

end P TO S ;

• in std_logic ;

• in std_logic ;

: out std_logic

-- File Name:

-- Host Machine:

-- Target Machine:

-- Environment :

-- Organization:

-- Project:

-- Author:

-- Creation Date:

P TO S A.VHD

GATEWAY 486/33 (IBM AT Clone)

GATEWAY 486/33 (IBM AT Clone)

Model Technology VHDL Simulation for Windows (Vet 4.3f)

DOS Version 6.2

NASA-LaRC

Fly By Light - Power By Wire (FBL-PBW)

Mahyar R. Malekpour

05/20/96

-- Name/Number:

-- P TO S (architecture)

-- Abstract:

-- This file contains the architecture for the parallel to serial conversion

-- process•

-- SIGNAL DEFINITION :

-- Acronyms/Abbreviations:

-- BIU - Bus Interface Unit

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on: ??/??/96

-- by: Mahyar Malekpour

library IEEE ;

use IEEE.std_logic_l164.all ;

architecture P TO S Behave of P TO S is

component USLR

PORT (

Bit Clock In

Parallel Data In

Parallel Data Out

Load Parallel--

Mode Bit In

Serial Data In

Serial--Data--Out

) ;

end component ;

in

in

out

in

in

in

out

std_logic ;

std_logic_vector (Data_Length downto 0) ;

std_logic_vector (Data_Length downto 0) ;

std_logic ;

std_logic ;

std_logic ;

std_logic

for all : USLR use entity work.USLR (USLR_Behave) ;

67

signal GND_I : std_logic_vector (Data_Length downto 0) ; -- := "00000000"

signal GND_2 : std_logic := '0' ;

begin

-- This process serializes the data byte in the Input Data Buffer using

-- the rising edge of the bit clock and sends them ou_ one--bit at a time

-- at the rising edge.

-- Note: A start data bit, i.e., '0', is send out followed by the data

-- starting with the MS bit.

-- This process continneously sends out a stream of bits. When the

-- buffer is empty, it sends out 'O's.

U0: USLR port map (Bit_Clock_In, Parallel_Data_In, GND i, Load Parallel

Mode Bit In, GND_2, Serial_Data_Out--) ;

end P TO S Behave ;

-- File Name:

-- Host Machine:

-- Target Machine:

-- Environment :

-- Organization:

-- Project:

-- Author:

-- Creation Date:

PSCON E.VHD

Model Technology VHDL Simulation for Windows (Vet 4.3f)

DOS Version 6.2

NASA-LaRC

Fly By Light - Power By Wire (FBL-PBW)

Jerry H. Tucker, Mahyar Malekpour

os/2o/96

-- Name/Number:

-- PSCON (entity)

-- /zbstract:

-- Synthesiable Controller for Parallel to serial convertor.

-- SIGNAL DEFINITION :

-- Acronyms/Abbreviations:

-- FBL/PBW

-- BIU - Bus Interface Unit

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on: 6/12/96

-- by: Mahyar Malekpour

-- i. Added this document template and,

-- 2. changed some signal names so that they are more descriptive:

-- Old Name New Name

-- DO Load P TO S Count

-- EMPTY FIFO_Empty_Bar

-- CLK Bit Clock

-- Modified on: 6/18/96

-- by: Mahyar Malekpour

-- Added Count Value so that the S TO P Count can be initialized to the

-- proper value. This counter is decremented after every read from the

-- FIFO In.

-- Modified on: 8/20/96

-- by: Mahyar Malekpour

68

-- Added Read FIFO Error to report errors while reading data bytes from the

-- FIFO.

library IEEE ;

use IEEE.std_logic_l164.all ;

use WORK.CNSTNT P.all ;

Entity PSCON is

port (

Load P TO S Count

Count Value

FIFO_Empty_Bar

Bit Clock

BYT_ CLOCK
Read FIFO Error

FIFO--RD bar

end PSCON ;

in

in

in

in

in

out

out

STD LOGIC ;

std_logic_vector (Data_Length downto 0)

STD LOGIC

STD LOGIC

STD LOGIC

std_logic

STD LOGIC ;

-- File Name:

-- Host Machine:

-- Target Machine:

-- Environment :

-- Organization:

-- Project:

-- Author:

-- Creation Date:

PSCON A.VHD

GATEWAY 486/33 (IBM AT Clone)

Model Technology VHDL Simulation for Windows (Vet 4.3f)

DOS Version 6.2

NASA-LaRC

Fly By Light - Power By Wire (FBL-PBW)

Jerry H. Tucker, Mahyar Malekpour

05/20/96

-- Name/Number:

-- PSCON (architrecture)

-- 7kbstract:

-- Synthesiable Controller for Parallel to serial convertor.

-- SIGNAL DEFINITION :

-- Acronyms/Abbreviations:

-- FBL/PBW

-- BIU - Bus Interface Unit

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on: 6/12/96

-- by: Mahyar Malekpour

-- i. Added this document template and,

-- 2. changed some signal names so that they are more descriptive:

-- Old Name New Name

-- DO Load P TO S Count

-- EMPTY FIFO_Empty_Bar

-- CLK Bit Clock

-- SYN PSCON Behave

-- 3. Chnaged the logic to reflect the proper logic of FIFO_Empty_Bar.

-- FIFO_Empty_Bar = 'i' ==> FIFO is not empty.

-- Modified on: 6/18/96

-- by: Mahyar Malekpour

-- Added a new process to handel the P TO S Count counter.

69

-- Modified on: 7/31/96

-- by: Mahyar Malekpour

-- Synch'ed the state machine with the Byte_Clock via Read A Byte signal.

-- Modified on: 8/20/96

-- by: Mahyar Malekpour

-- Generating the FIFO read error if the FIFO is empty while reading data.

-- I raise the error flag.

library IEEE ;

use WORK.CNSTNT P.all ;

use ieee.std_logic_arith.all ;

use IEEE.std_logic_l164.all ;

--use ieee.std_logic_signed. CONV_INTEGER ;

use work.my_std_logic_arith.all ;

architecture PSCON Behave of PSCON is

signal

signal

P TO S Count : std_logic_vector (Data_Length downto 0)

Read A Byte : std_logic := 'i' ;

begin

FIFO RD bar <= BYTE CLOCK or Read A Byte ;

:= (others => '0') ;

Read FIFO : process (FIFO_Empty_Bar, P TO S Count)

begin

-- added the following statement to synch the state machine with

-- the Byte_Clock, otherwise the FIFO RD bar will not be active for

-- enough time.

-- 7/31/96

if (P TO S Count /= "00000000") then

if (FIFO_Empty_Bar = 'i') then -- If there is data

Read A Byte <= '0' after Delay_5_ns ;

Read FIFO Error <= '0' after Delay_5_ns ;

else -- FIFO is empty

Read A Byte <= 'i' after Delay_5_ns ;

Read_FIFO_Error <= 'i' after Delay_5_ns ;

end if ;

else

Read A Byte <= 'i' after Delay_5_ns ;

Read FIFO Error <= '0' after Delay_5_ns ;

end if--; --

end process ;

-- This process loads the counter upon Load P TO S Count active.

-- This process decrements the counter until it reaches zero.

Counter Controller : process (FIFO_Empty_Bar, Load P TO S Count, Byte_Clock)

variable TEMP : integer ; --natural range 0 to 255 := 0 ;

begin

if (Load P TO S Count = 'i') then

P TO S Count <= Count Value ;

end if ;

if Rising_Edge (Byte_Clock) then

-- Synopsys vs Cadence

TEMP := To_Integer (P TO S Count) ;

-- TEMP := CONV INTEGER (P TO S Count)

if (TEMP > 0) then

TEMP := TEMP - 1 ;

end if ;

-- Synopsys vs Cadence

P TO S Count <= To_StdLogicVector (TEMP, 8) ;

7O

P TO S Count <= CONV STD LOGIC VECTOR (TEMP, 8)

end if ;

end process ;

end PSCON_Behave;

-- File Name: BYTCLK E.VHD

-- Host Machine: GATEWAY 486/33 (IBM AT Clone)

-- Target Machine: GATEWAY 486/33 (IBM AT Clone)

-- Environment : Model Technology VHDL Simulation for Windows (Vet 4.3f)

-- DOS Version 6.2

-- Organization: NASA-LaRC

-- Project: Fly By Light - Power By Wire (FBL-PBW)

-- Author: Mahyar R. Malekpour

-- Creation Date: 7/26/1996

-- Name/Number:

-- BYTCLK (architecture)

-- Abstract:

-- This file contains the entity for the Byte Clock generator.

-- SIGNAL DEFINITION :

-- Acronyms/Abbreviations:

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on: 8/15/96

-- by: Mahyar Malekpour

-- Separating the Byte_Clock to handel the Sync_Detected.

library IEEE ;

use ieee.std_logic_l164.all;

entity BYTCLK is

port (Reset BIU

Start_Cycle

Sync_Detected

Bit Clock In

Fixed_Byte_Clock_Out

Strobe Out

Variab_e_Byt e_Cl ock_Out

) ;

end BYTCLK ;

in std_logic ;

in std_logic ;

in std_logic ;

in std_logic ;

out std_logic ;

out std_logic ;

out std_logic

-- File Name:

-- Host Machine:

-- Target Machine:

-- Environment :

-- Organization:

-- Project:

-- Author:

-- Creation Date:

BYTCLK A.VHD

GATEWAY 486/33 (IBM AT Clone)

GATEWAY 486/33 (IBM AT Clone)

Model Technology VHDL Simulation for Windows (Vet 4.3f)

DOS Version 6.2

NASA-LaRC

Fly By Light - Power By Wire (FBL-PBW)

Mahyar R. Malekpour

7/26/1996

7]

-- Name/Number:

-- BYTCLK (architecture)

-- Abstract:

-- This file contains the architecture for the Byte Clock generator.

-- SIGNAL DEFINITION :

-- Acronyms/Abbreviations:

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on: 8/1/96

-- by: Mahyar Malekpour

-- Modified the shape of the Byte_Clock and Nibble Clock clocks while

-- maitaining the relative position of the Strobe _lock.

-- Modified on: 8/15/96

-- by: Mahyar Malekpour

-- Separating the Byte_Clock to handel the Sync_Detected.

library IEEE ;

use WORK.CNSTNT P.all ;

use ieee.std_logic_arith.all ;

use work.my_std_logic_arith.all ;

architecture BYTCLK Behave of BYTCLK is

signal Fixed_Byte_Clock

signal Variable_Byte_Clock

signal Nibble Clock

divide by 4 clock

signal Strobe

std_logic

std_logic

std_logic

std_logic

-- := '1'

-- := '1'

-- := '1'

-- := '1'

-- divide by 9 clock

-- divide by 9 clock

-- divide by 9 clock times 2, i.e.,

-- Used to load p-to-s register

begin

Fixed_Byte_Clock Out <= Fixed_Byte_Clock after Delay_7_ns ;

Variable_Byte_Cl_ck_Out <= Variable_Byte_Clock after Delay_7_ns ;

Strobe_Out <= Strobe after Delay_7_ns ;

-- This process builds a 4-bit counter that counts from 0 to 8. This counter

-- is used to divied the incoming bit-clock by nine and assigns it to

-- Nibble_Clock and Fixed_Byte_Clock.

-- The counter is reset whenever BIU is reset or when a sync pattern is

-- detected.

-- This process divides the incoming bit-clock by nine and assigns it to

-- Fixed_Byte_Clock. Since nine is an odd number, the Fixed_Byte_Clock

-- will be high for 4 bit-clocks and low for 5 bit-clock.

-- It is essential that the Fixed_Byte_Clock to be low when Count is "0000".

Fixed Clock Counter: process (Reset_BIU, Bit_Clock_In, Start_Cycle)

varTable Count natural range 0 to 15 := 0 ;

begin

if Rising_Edge Bit_Clock_In) then

if (Reset_BIU = '0') and (Start_Cycle = '0') then

72

Count := (Count + 1) mod 9 ;

elsif (Reset BIU = 'i'

Count := 0 ;

) then -- Time to reset the system and intialize the counter.

elsif (Start_Cycle = 'i') then -- Time to reset the system and intialize the counter.

Count := 0 ;

end if ;

if (Count = 2) then

Nibble Clock <= 'i' ; -- not Nibble Clock ;

elsif (Count = 3) then

Strobe <= 'i' ; -- active before the rising edge of Fixed_Byte_Clock

elsif (Count = 4) then

Fixed_Byte_Clock <= 'i' ; -- not Fixed_Byte_Clock ;

Nibble Clock <= '0' ; -- not Nibble Clock ;

Strobe <= '0' ;

elsif (Count = 6) then

Nibble Clock <= 'i' ; -- not Nibble Clock ;

elsif (Count = 0) then

Fixed_Byte_Clock <= '0' ;

Nibble Clock <= '0' ;

Strobe <= '0' ;

end if ;

end if ;

end process Fixed Clock Counter ;

-- This process builds a 4-bit counter that counts from 0 to 8. This

-- counter is used to divied the incoming bit-clock by nine and assigns

-- it to Variable_Byte_Clock.

-- The counter is reset whenever BIU is reset or when a sync pattern is

-- detected.

Variabl Clock Counter: process (Reset_BIU, Bit_Clock_In, Sync_Detected)

variable TEMP : natural range 0 to 15 := 0 ;

begin

if Rising_Edge (Bit Clock In) then

if (Reset BIU = 'O') and (Sync_Detected = '0') then

TEMP := _ TEMP + 1) mod 9 ;

elsif (Reset BIU = 'i') then -- Time to reset the system and intialize the counter.

TEMP := 0 ;

elsif (Sync_Detected = 'i') then -- Time to reintialize the counter.

TEMP := 6 ;

end if ;

if (TEMP = 4) then

Variable_Byte_Clock <= 'i' ; -- not Variable_Byte_Clock ;

elsif (TEMP = 0) then

Variable_Byte_Clock <= '0' ;

end if ;

end if ;

end process ;

end BYTCLK Behave ;

-- File Name:

-- Host Machine:

-- Target Machine:

-- Environment :

-- Organization:

-- Project:

HEADER E.VHD

GATEWAY 486/33 (IBM AT Clone)

GATEWAY 486/33 (IBM AT Clone)

Model Technology VHDL Simulation for Windows (Ver 4.4j)

DOS Version 6.2

NASA-LaRC

Fly By Light - Power By Wire (FBL-PBW)

73

-- Author: Mahyar R. Malekpour

-- Creation Date: 8/1/1996

-- Name/Number:

-- HEADER (entity)

-- Abstract:

-- This module examines the data packet header of the incomming data and

-- detects the sync-pattern. It then checks the data for the packet Id and

-- compares it against the local BIU ID. If a match is detected, LOAD COUNTER

-- is asserted. Error falgs are raised when necessary.

-- SIGNAL DEFINITION :

-- Acronyms/Abbreviations:

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on: 8/7/96

-- by: Mahyar Malekpour

-- Added Reset BIU and Command_Data_Flag signals.

-- Command_Data_Flag is set high to indicate that the data packet is a command

-- and is set low to indicate that it is a count of data bytes that need to be

-- routed to the output FIFO.

-- Modified on: 8/9/96

-- by: Mahyar Malekpour

-- Modified on: 9/4/96

-- by: Mahyar Malekpour

-- Added BIU OR RMU to this module.

library IEEE ;

use ieee.std_logic_l164.all;

use WORK.CNSTNT P.all ;

entity HEADER is

port (

BIU OR RMU : in std_logic ;

Reset BIU : in std_logic ;

BIU ID : in std_logic_vector (Data_Length downto 0) ;

Mode Bit In : in std_logic ;

Data_In : in std_logic_vector (Data_Length_Plus_l downto 0)

Byte Clock In : in std_logic ;

Sync_Detec_ed_Out : out std_logic ;

Command_Data_Flag : out std_logic ;

Load_Counter_Out : out std_logic

) ;

end HEADER ;

-- File Name:

-- Host Machine:

-- Target Machine:

-- Environment :

-- Organization:

-- Project:

-- Author:

-- Creation Date:

HEADER A.VHD

GATEWAY 486/33 (IBM AT Clone)

GATEWAY 486/33 (IBM AT Clone)

Model Technology VHDL Simulation for Windows (Ver 4.4j)

DOS Version 6.2

NASA-LaRC

Fly By Light - Power By Wire (FBL-PBW)

Mahyar R. Malekpour

8/1/1996

74

-- Name/Number:

-- HEADER (architecture)

-- Abstract:

-- This file contains the architecture for the data packet header module.

-- SIGNAL DEFINITION :

-- Acronyms/Abbreviations:

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on: 8/1/96

-- Note: the Load Counter Out signal must be raised and used within a Bit Clock

-- cycle. Thus, in worst case I used a delay of half Bit Clock cycle, i.e.,

-- Delay 5 ns ;

-- Modified on: 8/20/96

-- Incorporated the Global BIU ID in detecting packets for the modules.

-- Modified on: 9/4/96

-- Modified on: 9/16/96

-- Incorporated the status bit in detecting packets for the modules.

library IEEE ;

use WORK.CNSTNT P.all ;

use ieee.std_logic_arith.all ;

architecture HEADER Behave of HEADER is

signal Sync_Detected : std_logic ;

begin

Sync_Detected_Out <= Sync_Detected after Delay_2_ns ;

-- This process checks the incomming data stream against the unique and

-- predefined pattern of synchronization; Sync_Pattern.

Check_Sync_Pattern : process (Reset_BIU, Data_In, Mode Bit In)

begin

Sync_Detected <= '0' ;

if (Reset BIU = '0') then

if (Data In = Sync_Pattern) and (Mode Bit In = 'i') then

Sync_De_ected <= 'i' ;

end if ;

end if ;

end process ;

-- The counter is reset whenever BIU is reset.

-- The counter is set whenever Sync_Detected is set.

Two_Bit_Counter: process (Reset_BIU, Sync_Detected, Byte_Clock_In,

Data_In, BIU OR RMU)

variable TEMP : natural range 0 to 3 := 0 ;

75

begin

if (Reset_BIU = '0') and (Sync_Detected = '0') then

if Rising_Edge (Byte_Clock_In) then

Command_Data_Flag <= '0' ;

if (TEMP = 1) then

-- BIU IDs are only 5-bits long. The higher three bits are reserved.

if (Data_In (Data_Length - 4 downto 0) = BIU_ID (Data_Length - 4 downto 0)) --

is it mine?

or (Data_In (Data_Length - 4 downto 0) = Global BIU ID (Data_Length - 4 downto

0)) -- is it everyones?

or (Data In (Data_Length - 1) = 'i') -- is it status info?

or (BIU OR RMU = '0') then -- I am RMU

TEMP := TEMP + 1 ;

if (Data_In (Data_Length) = 'i') then -- it is a command

Command_Data_Flag <= 'i' after Delay_5_ns ;

end if ;

else -- It is not mine ignore it.

TEMP := 0 ;

end if ;

elsif (TEMP = 2) then

Load Counter Out <= 'i

TEMP := 0 ;

after Delay_5_ns

elsif (TEMP = 0) then

Load Counter Out <= '0 after Delay_5_ns

end if ;

end if ;

elsif (Sync_Detected = 'i' then -- Time to reintialize the counter.

TEMP := 1 ;

Load_Counter_Out <= '0' after Delay_5_ns ;

elsif (Reset BIU = 'i') then -- Time to reset the system and intialize the counter.

TEMP := 0 ;

Load Counter Out <= '0' ;

Command Data Flag <= '0' ;

end if ;

end process ;

end HEADER Behave ;

-- File Name: DATCLK E.VHD

-- Host Machine: GATEWAY 486/33 (IBM AT Clone)

-- Target Machine: GATEWAY 486/33 (IBM AT Clone)

-- Environment : Model Technology VHDL Simulation for Windows (Vet 4.3f)

-- DOS Version 6.2

-- Organization: NASA-LaRC

-- Project: Fly By Light - Power By Wire (FBL-PBW)

-- Author: Mahyar R. Malekpour

-- Creation Date: 8/1/1996

-- Name/Number:

-- DATCLK (architecture)

-- Abstract:

-- This file contains the entity for the read data packet clock generator.

-- This counter is used to load in the data packet header from the

-- Input FIFO. It is loaded with a value of 3 and counts down to 0.

-- SIGNAL DEFINITION :

-- Acronyms/Abbreviations:

-- Dependencies:

76

-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on: ??/??/96

-- by: Mahyar Malekpour

library IEEE ;

use ieee. std_logic_l164 .all

entity DATCLK is

port (Reset BIU in std_logic ;

Transmit Data in std_logic ;

Byte Clock In in std_logic ;

Count_Value_Out out std_logic_vector (1 downto 0)

) ;

end DATCLK ;

-- File Name:

-- Host Machine:

-- Target Machine:

-- Environment :

-- Organization:

-- Project:

-- Author:

-- Creation Date:

DATCLK A.VHD

GATEWAY 486/33 (IBM AT Clone)

GATEWAY 486/33 (IBM AT Clone)

Model Technology VHDL Simulation for Windows (Vet 4.3f)

DOS Version 6.2

NASA-LaRC

Fly By Light - Power By Wire (FBL-PBW)

Mahyar R. Malekpour

8/1/1996

-- Name/Number:

-- DATCLK (architecture)

-- Abstract:

-- This file contains the architecture for the read data packet clock generator.

-- This counter is used to load in the data packet header from the

-- Input FIFO. It is loaded with a value of 3 and counts down to 0.

-- 3 ==> read first byte, has to be FF

-- 2 ==> read second byte, is a BIU ID

-- 1 ==> read third byte, is a command or a count of number of bytes to follow

-- this value has to loaded into the p to s count counter/register.

-- 0 ==> noop.

-- SIGNAL DEFINITION :

-- Acronyms�Abbreviations:

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine�Compiler Dependencies:

-- Revisions:

-- Modified on: 8/1/96

library IEEE ;

use WORK.CNSTNT P.all ;

77

use ieee.std_logic_arith.all ;

use work.my_std_logic_arith.all ;

architecture DATCLK Behave of DATCLK is

begin

-- The counter is reset whenever BIU is reset.

Two Bit Counter: process (Reset_BIU, Byte_Clock_In) -- COUNT)

variable TEMP : natural range 0 to 3 := 0 ;

begin

if (Reset BIU = '0') then

if Rising_Edge (Byte_Clock In) then

if (Transmit Data = 'i' _ then

TEMP := 3 ;

else

if (TEMP > 0) then

TEMP := TEMP - 1 ;

end if ;

end if ;

end if ;

else -- Time to reset the system and intialize the counter.

TEMP := 0 ;

end if ;

-- Synopsys vs Cadence

-- Count Value Out <= CONV STD LOGIC VECTOR (TEMP, 2) ;

Count_Value_Out <= To_StdLogicVecto_ (TEMP, 2) after Delay i0 ns ;

end process ;

end DATCLK Behave ;

-- File Name:

-- Host Machine:

-- Target Machine:

-- Environment :

-- Organization:

-- Project:

-- Author:

-- Creation Date:

PRMCON E.VHD

GATEWAY 486/33 (IBM AT Clone)

GATEWAY 486/33 (IBM AT Clone)

Model Technology VHDL Simulation for Windows (Vet 4.3f)

DOS Version 6.2

NASA-LaRC

Fly By Light - Power By Wire (FBL-PBW)

Mahyar R. Malekpour

8/14/1996

-- Name/Number:

-- PRMCON (entity)

-- 7ibstract:

-- This module is the EPROM/RAM controller and handels fetching of

-- instructions from the EPROM/RAM.

-- SIGNAL DEFINITION :

-- Acronyms/Abbreviations:

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

78

-- Modified on: 8/29/96

-- by: Mahyar Malekpour

-- Added EPROM Error_Flag to this entity.

-- Added BIU OR RMU to this entity.

-- Modified on: 9/4/96

-- by: Mahyar Malekpour

-- Added MUX Select and Start_Command to this entity.

.....................
..........................

................................... _

.........................

library IEEE ;

use ieee.std_logic i164.ali;

use WORK.CNSTNT P.all ;

use WORK.EPROM_P.all ;

entity PRMCON is

port (

BIU OR RMU

Reset BIU

Sync_Detected

StartCycle

BIU ID

Byte_Clock In

Start Transmit

Start Receieve

Status Data

Start Command

MUX Select

ROM Data

ROM_Read Bar

ROM Write Bar

ROM--AIDDRESS

EPROM_Error Flag

in

in

in

in

in

in

out

out

out

out

out

in

out

out

out

out

stdlogic

stdlogic

stdlogic

std logic

std_logiczrecto r (DataLength downto 0 ;

stdlogic

stdlogic

stdlogic

stdlogic

std logic

std_logic_vector (Data_Length downto 0)

std_logic_vector (ROM_WIDTH - 1 downto 0) ;

std Logic ; -- := '0' ; -- active low

std--Logic ; -- := '0' ; -- active low

std_logic_vector (ROM_ADDRESS LINES - 1 downto 0)

std_logic

) ;

-- File Name: PRMCON A.VHD

-- Host Machine: GATEWAY 486/33 (IBM AT Clone)

-- Target Machine: GATEWAY 486/33 (IBM AT Clone)

-- Environment : Model Technology VHDL Simulation for Windows (Ver 4.3f)

DOS Version 6.2

-- Organization: NASA-LaRC

-- Project: Fly By Light - Power By Wire (FBL-PBW)

-- Author: Mahyar R. Malekpour

-- Creation Date: 8/14/1996

...

-- Name/Number: (architecture)
-- PRMCON

-- Abstract:

-- This file contains the architecture for the EPROM/RAM controller.

-- SIGNAL DEFINITION :

__ Acronyms/Abbreviations:

-- Dependencies:

__ IEEE.STD LOGIC_If64

-- Global Objects:

-- Exceptions:

_- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on; 8/29/96

79

-- Modified on: 9/3/96

-- Distingushing between BIU and RMU. Added the necesarry logic.

-- Modified on: 9/6/96

-- To send the incomming data out on the read-bus ASAP, I had to modify the

-- code and add some new logic so that start transmit signal is generated for

-- this case and at the appropriate time.

library IEEE ;

use WORK.CNSTNT P.all ;

use WORK.EPROM P.all ;

use ieee.std_l_gic_arith.all ;

use work.my_std_logic_arith.all ;

architecture PRMCON Behave of PRMCON is

constant Delta_Time_Length : integer := Data_Length_Plus_l ; -- 8 bits

constant Timer_Length : integer := (2 * Data_Length_Plus_l) ; -- 16 bits

signal Load_Counter_Bar std_logic := 'i' ;

signal Instruction Buffer

signal READ A Inst

signal Internal ROM READ Bar

signal Decode Inst

signal Pause Fetch

signal Resume Fetch

std_logic_vector (Data_Length downto 0)

std_logic := 'i' ;

std_logic := 'i' ;

std_logic := 'i' ;

std_logic := '0' ;

std_logic := '0' ;

:= (others => '0') ;

begin

Internal ROM READ Bar <= BYTE CLOCK In or READ A Inst ;

ROM READ--Bar--<= Internal ROM READ BaT ;

-- This process loads the EPROM instruction into a temporary buffer for

-- future use.

Load_Instruction : process (Reset_BIU, BIU OR RMU, Start_Cycle, ROM_Data,

Internal ROM READ Bar)

begin

if (Reset BIU = '0') and (Start_Cycle = '0') then

if (Internal ROM READ Bar = '0') then -- load it.

Instruction_Buffer <= ROM_Data (Data_Length downto 0) ;

end if ;

elsif (Start_Cycle = 'i') then -- Time to reset the system.

if (BIU OR RMU = 'i') then -- if BIU

Instruction Buffer <= (others => '0') ;

end if ;

else -- if (Reset BIU = 'i') -- Time to reset the system.

Instruction Buffer <= (others => '0') ;

end if ;

end process ;

-- The counter is reset whenever BIU is reset.

-- The counter is set whenever Start_Cycle is set.

Decode_Instruction : process (BIU OR RMU, Reset_BIU, Start_Cycle, Decode_Inst,

Byte Clock In, Pause_Fetch, Resume Fetch,

Instruction_Buffer, Sync_Detected

variable TEMP : integer ;

begin

8O

if (Reset BIU = '0') and (Start_Cycle = '0') then

if Falling_Edge (Decode Inst) then

if (Instruction Buffet = "iiiiiiii") then

Pause Fetch <= 'i' ; -- end of schedule detected.

elsif (Instruction Buffer (4 downto 0) = BIU ID (4 downto 0)) -- Is it mine?

or (Instruction_Buffer (Data_Length - 4 downt_ 0) = Global BIU ID (Data_Length - 4

downto 0)) then -- is it everyones?

if (Instruction Buffer

Start Transmit--<= 'i'

end if ;

if (Instruction Buffer

Start Receieve--<= 'i'

end if ;

if (Instruction Buffer

Status Data <= 'i'

end if ;

7) = 'i') then

6) = 'i') then

5) = 'i') then

else -- so it is not mine, then

-- RMU's operation is opposite of the BIU's

-- I.e., While BIU is transmitting, RMU must be receiving data.

-- 9/S/96

-- RMU must transmit this data ASAP and unconditionally.

-- 9/6/96

if (BIU OR RMU = '0') then -- am I RMU?

if (Instruction Buffer (7) = 'i') then

Start Receieve--<= 'i' ;

MUX Select <= Instruction Buffer ;

end if ;

end if ;

end if ;

if (Instruction Buffer (4 downto 0) = BIU ID (4 downto 0)

and (Instruction--Buffer (7) = 'i')

and (Instruction--Buffer (5) = 'i')

and (BIU OR RMU = '0') then -- am I RMU?

Start Command <= 'i' ;

end if ;

-- Is it mine?

end if ;

-- Special case of RMU.

-- Send out data as soon as receiving them

-- 9/6/96

if (Sync_Detected = 'i') then

if (BIU OR RMU = '0') then -- am I RMU?

-- This is the number of clock cycles that takes the data to

-- go thru the RMU, i.e., pin to pin delay of RMU at this time

-- This value must be increased after introduction of voting or

-- other operations on the incomming data.

-- 9/6/96

TEMP := 3 ;

end if ;

end if ;

if Rising_Edge (Byte_Clock In) then

Start Transmit <= '0' after Delay_B_ns ;

Start--Receieve <= '0' after Delay_B_ns ;

Status Data <= '0' after Delay_B_ns ;

Start_Command <= '0' after Delay_B_ns ;

if (TEMP > 0) then

TEMP := TEMP - 1 ;

end if ;

if (TEMP = 1) then

Start Transmit <= 'i' after Delay_B_ns ;

Status_Data <= 'i' after Delay_B_ns ;

end if ;

end if ;

elsif (Reset BIU = 'i' then -- Time to reset the system and intialize the counter.

8]

TEMP := 0 ;

Pause Fetch <= '0' ;

Start--Transmit <= '0' ;

Start--Receieve <= '0' ;

Status Data <= '0' ;

Start Command <= '0' ;

elsif (Start_Cycle = 'i'

Pause Fetch <= '0'

Start--Transmit <= '0'

Start--Receieve <= '0'

Status Data <= '0'

Start Command <= '0'

end if ;

if (Resume Fetch = 'i'

Pause FetCh <= '0' ;

end if ;

end process ;

) then -- Time to reset and intialize the counter.

then

-- This process fetches one instruction at a time upon receiving the

-- Start_Cycle signal. Each instruction is 2 bytes long. It loads the

-- delta time of the next instruction into the Delta Time Clock counter

-- and counts it down. When it reaches zero, it then issues a read signal

-- to the EPROM. It stops/pauses reading from the EPROM upon Pause Fetch

-- and Pause Fetch is asserted when the end-of-schedule delimiter is

-- encountered.

-- The counters are reset whenever BIU is reset.

-- The counters are set whenever Start_Cycle is set.

Fetch_Instruction : process (BIU OR RMU, Reset_BIU, Start_Cycle,

Byte_Clock_In, Pause_Fetch, Resume_Fetch,

ROM_Data, Internal_ROM_READ_Bar)

-- constant ROM DEPTH : integer := 2 ** ROM DEPTH BITS ;

variable Address : integer range 0 to ROM DEPTH - 1 := 0 ;

variable Delta Time Clock : integer range 0 to 256 := 0

begin

if (Reset_BIU = '0') and (Start_Cycle = '0') then

if Rising_Edge (Byte_Clock In) then

Decode_Inst <= 'i' after Delay_5_ns ;

READ A Inst <= 'i' after Delay_5_ns ;

if (Pause Fetch = '0') then

Resume Fetch <= '0' ;

if (Internal ROM READ Bar = '0') then -- load it

Delta Time Clock := To_integer (ROM_Data (ROM WIDTH - 1 downto 8)) ;

Delta--Time--Clock := Delta Time Clock + 1 ; -- t_ avoid lock up due to 0

elsif (Delta Time Clock > 0) then

Delta Time Clock--:= Delta Time Clock - 1 ;

if (Delta Time Clock = 0) then

-- It reached--zero and time to decode the old opcode and read the next

instruction.

Decode Inst <= '0' after Delay_5_ns ;

-- Issue a read instrunction to the EPROM.

READ A Inst <= '0' after Delay_5_ns ;

-- Synopsys vs Cadence

-- ROM_ADDRESS <= Address after Delay_5_ns ;

-- s/s/9v
-- ROM ADDRESS <: To_StdLogicVector (Address, ROM DEPTH_BITS) after Delay 5 ns ;

ROM_ADDRESS <= To_StdLogicVector (Address, ROM_ADDRESS_LINES) after Delay_5_ns

schedule?

Address := (Address + 1) mod ROM DEPTH ;

if (Address = 0) then -- I.e. we read all EPROM and didn't detect end-of-

82

EPROM_Error_Flag <= 'i' ; -- There was an error

end if ;

end if ;

end if ;

else -- Pause Fetch = 'i', reset the RMU

if (BIU OR RMU = '0') then -- if RMU

Address := 0 ; -- read first instruction

Delta Time Clock := 1 ; -- This will force the reading of the first instruction

rightaway at the first Byte clock.

Decode Inst <= 'i' after Delay_5_ns ;

EPROM_Error_Flag <= '0' ;

ROM_ADDRESS <= To_StdLogicVector (Address, ROM_ADDRESS_LINES) after Delay 5 ns ;

Resume Fetch <= 'i' ;

end if ;

end if ;

end if ;

elsif (Reset BIU = 'i' then -- Time to reset the system and reintialize the counter.

if (BIU OR RMU = 'i' then -- if BIU

Address := 2 ; -- skip first two instructions

Delta Time Clock := 0 ;

else -- elseif (BIU OR RMU = '0') then -- if RMU

Address := 0 ; -- read first instruction

Delta Time Clock := 1 ; -- This will force the reading of the first instruction

rightaway at the first Byte clock.

end if ;

Decode_Inst <= 'i' after Delay_5_ns ;

READ A Inst <= 'i' after Delay_5_ns ;

EPROM_Error_Flag <= '0' ;

ROM_ADDRESS <= To_StdLogicVector (Address, ROM_ADDRESS_LINES) after Delay_5_ns ;

Resume Fetch <= '0' ;

elsif (Start_Cycle = 'i') then -- Time to reset and reintialize the counter.

if (BIU OR RMU = 'i') then -- if BIU

-- It has to BIU, so restart schedule.

Address := 2 ; -- skip first two instructions

Delta Time Clock := 1 ;

Decode Ins_ <= 'i' after Delay_5_ns ;

EPROM_Error_Flag <= '0' ;

ROM_ADDRESS <= To_StdLogicVector (Address, ROM_ADDRESS_LINES) after Delay_5_ns ;

end if ;

end if ;

end process ;

end PRMCON Behave ;

-- File Name: EPROM P.VHD

-- Host Machine: GATEWAY 486/33 (IBM AT Clone)

-- Target Machine: GATEWAY 486/33 (IBM AT Clone)

-- Environment : Model Technology VHDL Simulation for Windows (Vet 4.2e)

-- DOS Version 6.2

-- Organization: NASA-LaRC

-- Project: Fly By Light - Power By Wire (FBL-PBW)

-- Author: Mahyar R. Malekpour

-- Creation Date: 8/19/96

-- Name/Number:

-- EPROM P.VHD (entity/architecture)

-- Abstract:

-- Acronyms/Abbreviations:

-- FBL/PBW

-- Dependencies:

-- none

83

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on: 5/8/1997

-- by: Mahyar Malekpour

-- i. Updated value of the ROM DELAY to reflect the AMD27C256-55 chip timing,

-- i.e., Output Enable to Output Delay (Toe).

-- 2. Updated value of the ROM WIDTH to reflect the AMD27C256-55 width.

library IEEE ;

use IEEE.std_logic_l164.all ;

package EPROM P is

constant ROM DELAY : time := 35 ns ; -- Output Enable to Output Delay (Toe)

constant ROM DEPTH : integer := 128 ; -- actually 32768 bytes ;

constant ROM WIDTH : integer := 16 ; -- 2 eproms

constant ROM ADDRESS LINES : integer := 12 ;

end EPROM P ;

-- File Name:

-- Host Machine:

-- Target Machine:

-- Environment :

-- Organization:

-- Project:

-- Author:

-- Creation Date:

RECEVR E.VHD

GATEWAY 486/33 (IBM AT Clone)

GATEWAY 486/33 (IBM AT Clone)

Model Technology VHDL Simulation for Windows (Vet 4.3f)

DOS Version 6.2

NASA-LaRC

Fly By Light - Power By Wire (FBL-PBW)

Mahyar R. Malekpour

8/20/1996

-- Name/Number:

-- RECEVR (entity)

-- Abstract:

-- This module is the Receiver controller that checks for the timing of

-- receiving incomming data/command packets.

-- SIGNAL DEFINITION :

-- Acronyms/Abbreviations:

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on: ??/??/96

-- by: Mahyar Malekpour

library IEEE ;

use ieee.std_logic_l164.all;

use WORK.CNSTNT P.all ;

entity RECEVR is

port (Reset_BIU • in std_logic ;

Start_Cycle • in std_logic ;

Receieve_Data : in std_logic ;

84

Byte Clock In : in std_logic ;

Load_Command_Reg : in std_logic ;

Start_Receieve : out std_logic ;

Receive_Error_l : out std_logic ;

Receive Error 2 : out std_logic ;

Switch_Time_In : in std_logic_vector (2 downto 0)

) ;

-- three bits for now

end RECEVR ;

-- File Name: RECEVR A.VHD

-- Host Machine: GATEWAY 486/33 (IBM AT Clone)

-- Target Machine: GATEWAY 486/33 (IBM AT Clone)

-- Environment : Model Technology VHDL Simulation for Windows (Vet 4.3f)

-- DOS Version 6.2

-- Organization: NASA-LaRC

-- Project: Fly By Light - Power By Wire (FBL-PBW)

-- Author: Mahyar R. Malekpour

-- Creation Date: 8/20/1996

-- Name/Number:

-- RECEVR (architecture)

-- /zbstract:

-- This module is the Receiver controller that checks for the timing of

-- receiving incomming data/command packets.

-- SIGNAL DEFINITION :

-- Acronyms/Abbreviations:

-- Dependencies:

-- IEEE.STD LOGIC 1164

-- Global Objects:

-- Exceptions:

-- Machine/Compiler Dependencies:

-- Revisions:

-- Modified on: ??/??/96

library IEEE ;

use WORK.CNSTNT P.all ;

use ieee.std_logic_arith.all ;

use work.my_std_logic_arith.all ;

architecture RECEVR Behave of RECEVR is

begin

-- This process checks for timing of data packet arrival within the

-- margin of Switch Time byte clocks. If it doesn't receive a package

-- for this module,--it raises error flags.

-- 8/2o/96
Check_Incoming_Data_Timning : process Reset_BIU, Start_Cycle, Receieve_Data,

Byte_Clock_In,

Load_Command_Reg)

variable Switch Time

variable Bool_Flag

variable TEMP

integer := 0

std_logic :=

integer := 0 ;

i' ; -- TRUE

begin

if (Reset BIU = '0' and (Start_Cycle = '0') then -- time to reset.

if Rising_Edge (Receieve_Data) then

85

Bool_Flag := 'i' ;

TEMP := 0 ;

end if ;

if Rising_edge (Byte_Clock In) then

if (Bool Flag = 'i') then

TEMP := TEMP + 1 ;

end if ;

if (TEMP > Switch Time) then

TEMP := 0 ; -- t_o late for the data to arraive!

Bool_Flag := '0' ;

Receive Error 1 <= 'i' ; -- Timing problem

else -- reset the error flags.

Receive Error 1 <= '0' ;

Receive Error 2 <= '0' ;

end if ;

Start_Receieve <= '0' after Delay_5_ns ;

end if ;

if Rising_Edge (Load_Command_Reg) then

if (Bool_Flag = 'i') then

if (TEMP <= Switch Time) then

Start_Receieve <= 'i' after Delay_5_ns ;

end if ;

Bool_Flag := '0' ; -- time to reset the flags

TEMP := 0 ;

else

Receive Error 2 <= 'i' ; -- Timing problem

end if ;

end if ;

else

Switch_Time := To_integer (Switch_Time_In) ;

Receive Error 1 <= '0' ;

Receive Error 2 <= '0' ;

TEMP := 0 ;

Bool_Flag := '0' ;

Start Receieve <= '0' ;

end if ;

end process ;

end RECEVR Behave ;

-- File Name: STATUS E.VHD

-- Host Machine: GATEWAY 486/33 (IBM AT Clone)

-- Target Machine: GATEWAY 486/33 (IBM AT Clone)

-- Environment : Model Technology VHDL Simulation for Windows (Vet 4.3f)

-- DOS Version 6.2

-- Organization: NASA-LaRC

-- Project: Fly By Light - Power By Wire (FBL-PBW)

-- Author: Mahyar R. Malekpour

-- Creation Date: 8/26/1996

-- Name/Number:

-- STATUS (architecture)

-- Abstract:

-- This file contains the entity for the send status out module.

-- The counter used is set to the number of status registers + 2 for the

-- header and ID information. The counter counts down to 0 indicating the

-- end of operation.

-- SIGNAL DEFINITION :

-- Acronyms/Abbreviations:

-- Dependencies:

-- IEEE.STD LOGIC 1164

86

-- Global Objects:

-- Exceptions:

_- Machine�Compiler Dependencies:

-- Revisions:

-- Modified on: ??/??/96

-- by: Mahyar Malekpour

..

...............................

library IEEE ;

use WORK.CNSTNT_P.all ;

use ieee.std_logic i164.ali;

entity STATUS is

port (
BIU OR RMU

Reset BIU

StartCycle

BIU ID

Start Command

Start--Transmit

Data_Status_Flag

Data_Mode_Bit

FIFOData_In

Byte Clock_In

Status_Reg_In

TransmitData

Load Byte_Out

Mode Bit Out

Data Status Out

) ;

in

in

in

in

in

in

in

in

in

in

in

out

out

out

out

stdlogic ;

stdlogic ;

stdlogic ;

std logic_vector

stdlogic ;

stdlogic ;

stdlogic ;

stdlogic ;

std_logic_vector

Data_Length downto 0

Data_Length downto 0

std logic ;

std_logic_vector Data_Length downto 0

std_logic ;

std_logic ;

std logic ;

std_logic vector (Data_Length downto 0

ii
-- File Name: STATUS A.VHD

-- Host Machine: GATEWAY 486/33 (IBM AT Clone)

-- Target Machine: GATEWAY 486/33 (IBM AT Clone)
-- Environment : Model Technology VHDL Simulation for Windows (Ver 4.3f)

DOS Version 6.2

-- Organization: NASA-LaRC

-- Project: Fly By Light - Power By Wire (FBL-PBW)

-- Author: Mahyar R. Malekpour

-- Creation Date: 8/26/1996
...

-- Name/Number: (architecture)
-- STATUS

-- Abstract:
This file contains the architecture for the send status out module.

-- The counter used is set to the number of status registers + 2 for the

-- header and ID information. The counter counts down to 0 indicating the

-- end of operation.

-- SIGNAL DEFINITION :

__ Acronyms/Abbreviations:

-- Dependencies:

__ IEEE.STD_LOGIC_II64

-- Global Objects:

-- Exceptions:

_- Machine�Compiler Dependencies:

87

-- Revisions:

-- Modified on: 9/16/96

-- by: Mahyar Malekpour

-- Making use of another previously unused bit, the status bit.

library IEEE ;

use WORK.CNSTNT P.all ;

use ieee.std_logic_arith.all ;

--use work.my_std_logic_arith.all ;

architecture STATUS Behave of STATUS is

signal

signal

signal

signal

signal

Status Mode Bit : std_logic ; -- set to 'i' for command,

Status Info : std_logic_vector (Data_Length downto 0)

Transmit_S_atus : std_logic ;

Write_A_Byte_l : std_logic ; -- := 'i' ;

Write_A_Byte_2 : std_logic ; -- := 'i' ;

0' for data

signal Command Mode_Bit : std_logic ; -- set to 'i' for command,

signal Command Out : std_logic_vector (Data_Length downto 0)

signal Transmit_Command : std_logic ;

0' for data

begin

Load_Byte_Out <= (Write A Byte_l and Write_A_Byte_2) or Byte_Clock_In after Delay_5_ns ;

-- This process is a MUX and decides to send out data or status

-- information.

Send_Data or Status : process (BIU OR RMU, Reset_BIU, Start_Cycle, Start_Transmit,

Data_Status_Flag, Command_Mode_Bit, Command_Out,

Data Mode Bit, FIFO_Data_In,

Status_Mode_Bit, Status_Info, Start_Command)

variable Choice : integer := 0 ;

begin

if (Reset BIU = '0') and (Start_Cycle = '0') then

if Rising_Edge (Start Transmit) then

if (Data_Status_Flag = 'i') then

if (Start Command = 'i') then -- if RMU

Choice := 2 ; -- command

else -- BIU

Choice := 1 ; -- data

end if ;

else

Choice := 0 -- status, RMU and BIU

end if ;

end if ;

if (Choice = 2 then

Data Status Out <= Command Out ;

Mode--Bit Ou_ <= Command--Mode Bit

elsif _ ChOice = 1) then -- --

Data Status Out <= FIFO Data In ;

Mode--Bit Ou_ <= Data--Mode--Bit ;

else -- ChOice = 0 -- --

Data Status Out <= Status Info ;

Mode--Bit Ou_ <= Status--Mode Bit

end if ;

else -- time to reset the system.

Choice := 1 ;

end if ;

end process ;

-- The Count is reset whenever BIU is reset.

88

-- The Count is reset whenever Start_Cycle is reset.

Send_Status_Out : process (Reset_BIU, Start_Cycle, Transmit_Status,

Byte_Clock_In, Status_Reg_In)

variable Count : integer := 0 ;

begin

if (Reset BIU = '0') and (Start_Cycle = '0') then

if Falling_Edge (Byte_Clock_In) then

if (Transmit Status = 'i') then

Count := 5 ; -- One extra count to be compatible with the Transmit Data case.

end if ;

Status Mode Bit <= '0' ;

Write_A_Byte_l <= ' 0 ' ;

if (Count = 4) then -- send out sync-pattern first

Status Info <= (others => 'i') ;

Status Mode Bit <= 'i' ;

elsif (Count = 3) then -- send out my id next

Status Info <= BIU ID ; --

Status_Info (Data_Length) <= '0' ; -- set the command bit to data.

Status_Info (Data_Length - 1) <= 'i' ; -- set the status bit.

elsif (Count = 2) then -- send out the count of data bytes to follow

Status Info <= "00000001" ;

elsif (Count = 1) then -- send out the status now

Status_Info <= Status_Reg_In ;

else -- if (Count = 0) then -- stop

Write_A_Byte_l <= 'i' ;

end if ;

if (Count >= 1) then

Count := Count - 1 ;

end if ;

end if ;

else -- time to reset the system.

Count := 0 ;

Status Info <= (others => '0') ;

Write_A_Byte_l <= 'i' ;

end if ;

end process ;

Send_Commands_Out : process (BIU OR RMU, Reset_BIU, Start_Cycle,

Transmit_Command, Byte_Clock_In)

variable Count : integer := 0 ;

begin

if (Reset BIU = '0') and (Start_Cycle = '0') then

if Falling_Edge (Byte_Clock In) then

if (Transmit Command = 'i T) then

Count := 4 ;

end if ;

Command Mode Bit <= '0'

Write_A_Byte_2 <= '0' ;

if (Count = 3) then -- send out sync-pattern first

Command Out <= (others => 'i') ;

Command Mode Bit <= 'i' ;

elsif (Count = 2) then -- send start_cycle command to all BIUs by

Command Out <= "00011111" ; -- Global BIU ID ;

Command_Out (Data_Length) <= 'i' ; -- set the command bit.

elsif (Count = 1) then -- send out the commands

Command_Out <= "00000001" ; -- bit zero => start_cycle, for now

89

else -- if (Count = 0) then -- stop

Write_A_Byte_2 <= 'i' ;

end if ;

if (Count >= 1) then

Count := Count - 1 ;

end if ;

end if ;

else -- time to reset the system.

Count := 0 ;

Command Out <= (others => '0') ;

Write_A_Byte_2 <= 'i' ;

end if ;

end process ;

Set D S C Flags : process (BIU OR RMU, Start_Transmit, Data_Status_Flag,

Start Command)

begin

if (BIU OR RMU = '0') and (Start Command = 'i') then -- if I am RMU

Transmit Command <= 'i' ;

Transmit--Data <= '0' ;

else -- if I am BIU

Transmit Command <= '0' ;

Transmit_Data <= Start_Transmit and Data_Status_Flag ; -- 1 and 1

end if ;

Transmit_Status <= Start_Transmit and (not Data_Status_Flag) ; -- 1 and 0

end process ;

end STATUS Behave ;

9O

Appendix B
C Codes

//
//
//
//
// Last Mod:

// Comment:

File: TESTPAL.CPP

Author: Mahyar Malekpour, Gabriel Velasquez
Comments: File Documentation

Creation Date: November 29, 1995

November 30, 1995

Changed some variable's names

#include <stdio.h>

#include <iostream.h>

#include <string.h>

#include <stdlib.h>

void main()

{
char one_byte ;

int i ;

cout << "Ready to test the tri-state signal." << endl;

cout << "Enter a charactor to continue." << endl;

cin >> one_byte ;

_asm

{
mov dx, 0300h

mov al,Olh

out dx,al

}

for(i=O;i<2;i++)

{
_asm

//inline assembly

//Reset and D/P_Bar Port

//Reset High, D/P_Bar Tristate

//Creates a delay(between 6 and 7 microsecs)

//inline assembly

//Reset and D/P_Bar Port

//Reset Low, D/P_Bar Tristate

mov dx, 0300h

mov al,00h

out dx,al

for(i=O;i<2;i++)

{
_asm

{
mov dx, 0300h

mov al,O2h

out dx,al

}
}

//Creates a delay(between 6 and 7 microsecs)

//inline assembly

//Reset and D/P_Bar Port

//Reset Low, D/P_Bar Low

for(i=O;i<2;i++)

{
_asm

{
mov dx, O3OOh

mov al,O3h

out dx,al

}
}

//Reset and D/P Bar Port

//Reset High, DTP_Bar Low

_asm

{
mov dx, O3OOh

mov al,Olh

out dx,al

}

//Reset and D/P_Bar Port

//Reset High, D/P_Bar Tristate

cout << endl;

cout << "Finished test." << endl;

} // end main

9]

///
//
//
//
//
//
//
//
//
//
//
//
//
//
// Old Address New Address Device Function

// ..

File: XC3020.CPP

Author: Mahyar Malekpour

Comment:

Creation Date: 4/12/96

Last Mod: 3/12/96

Changed the code to reflect the changes in the base addresses used

in the PAL and in the XC3020.

// 300H 306H PAL Reset XC3020

// 301H 307H PAL Program XC3020

// 302H 302H XC3020 Write status (Reset FIFOs)

// 303H 300H XC3020 Read/Write FIFOs

// 301H XC3020 Read status of FIFOs

// 303H XC4000 Transfer Data

// 304H reserved reserved

// 305H XC3020 Reset and Program XC4000

//
///

#include <stdio.h>

#include <iostream.h>

#include <string.h>

#include <stdlib.h>

void Reset Xilinx 3000 () ;

//void Wri_eToXC3000 () ;

//#define ARY SIZE i00

void main()

{
FILE *infile_tr ; // , *outfile_ptr ;

int array_count = 0 ;

int infile len ;

char infilename [80]

int char in ;

char *f_ptr ;

Reset Xilinx 3000 ()

//Get the input file name from user.

cout << "Enter Xilinx (XC3000 Family) Bitstream File Name (*.rbt) : " ;

cin >> infilename ;

cout << endl ;

infile len = strlen (infilename) ;

f_ptr = &infilename [infile_len - 4] ;

if (_strnicmp (f_tr, ".rbt", 4))

{
cout << "Error: No rbt extention ! !!" << endl ;

exit (1) ;

}

//Open input file

if ((infile_tr = fopen (infilename "r")) == NULL)

{
cout << "Cannot open input file: " << infilename << endl ;

exit (0) ;

}
cout << "Opened the input file: " << infilename << " to read." << endl ;

array_count = 0 ;

// Read the input rbt text file and save it in an array of char's.

char in = fgetc (infile_tr) ;

while (feof (infile_tr) == 0)

92

array_count++ ;

if ((char) char in == 'i')

{

}
else

if (

{

masm

{
mov dx,0307h

mov al,01h

out dx,al

}
//Data High

(char) char in == '0')

_asm

{
mov dx,0307h

mov al,00h

out dx,al //Data Low

}

} // if

// Read the next character.

char in = fgetc (infile_ptr) ;

} // while

fclose (infile_ptr) ;

cout << endl ;

cout << endl ;

cout << "Finished reading the XC3000 rbt file." << endl;

cout << endl << endl;

cout << "Number of characters read: " << array_count << endl;

} // end main

///
//
// i. A 'i' sets the D/P_Bar Low, while a '0' sets the D/P_Bar into

// a state of high impedence 'Z'.

// 2. Reset (bit DO) and D/P_Bar (bit DI) are at Address 306.

// The Data Port is at Address 301. Bit DO is used serially.

//
///

void Reset Xilinx 3000 ()

{

//Creates a delay(between 6 and 7 microsecs)

//inline assembly

//D/P_Bar and Reset Port

//D/P_Bar Tristate, Reset Low

//Creates a delay(between 6 and 7 microsecs)

//inline assembly

//D/P_Bar and Reset Port

//D/P_Bar Low, Reset Low

int i;

for(i=0;i<4;i++)

{
_asm

{
mov dx, 0306h

mov al,00h

out dx,al

}
}

for(i=0;i<4;i++)

{
_asm

{
mov dx, 0306h

mov al,02h

out dx,al

}
}

for(i=0;i<4;i++)

{
_asm

{

93

mov dx, 0306h

mov al,03h

out dx,al

}
}

ma sm

{

//D/P_Bar and Reset Port

//D/P_Bar Low, Reset High

File: XC4000.CPP

Author: Mahyar Malekpour

Comment:

Creation Date: 4/12/96

Last Mod: 4/29/96

Changed the code to reflect the changes in the base addresses used

in the PAL and in the XC3020.

mov dx, 0306h //D/P_Bar and Reset Port

mov al,01h //D/P_Bar Tristate, Reset High

out dx,al

}

} // Reset Xilinx 3000

///
///
///
//
//
//
//
//
//
//
//
//
//
//
//
//
// Old Address New Address Device Function

// ..

// 300H 306H PAL Reset XC3020

// 301H 307H PAL Program XC3020

// 302H 302H XC3020 Write status (Reset FIFOs)

// 303H 300H XC3020 Read/Write FIFOs

// 301H XC3020 Read status of FIFOs

// 303H XC4000 Transfer Data

// 304H reserved reserved

// 305H XC3020 Reset and Program XC4000

//
///

#include <stdio.h>

#include <iostream.h>

#include <string.h>

#include <stdlib.h>

void Reset XC4000 () ;

int XC4000_Ready () ;

int Write XC4000 () ;

void main()

{
char ch = 'a' ;

while (i)

{

cout

if ((ch :: 'x') II (ch :: 'X'))
{
<< endl << "Exiting program." << endl ;

break ;

}
else if ((ch == 'r') I I (ch == 'R'))

{
cout << "Reseting the XC4000" << endl ;

Reset XC4000 () ;

}
else if ((ch == 's') I I (ch == 'S'))

{
cout << "Cheking status of the XC4000" << endl ;

XC4000_Ready () ;

}
else if ((ch == 'p') I I (ch == 'P'))

{

94

cout << "Programming the XC4000" << endl ;

Write XC4000 () ;

}

cout << endl ;

cout << " " << endl ;

cout << "Waiting for command:" << endl ;

cout << " r to Reset the XC4000," << endl ;

cout << " p to Program the XC4000," << endl ;

cout << " s to read Status of the XC4000, or" << endl ;

cout << " x to exit this program." << endl ;

cin >> ch ;

cout << endl ;

} // end while

} // end main

///
//
// i.
// 2.
//
// 3.
//
//
//
//
//
// 4.
//
///

Reset and programming of the XC4000 is done thru the same port 305Hex.

While accessing this port, uP data bus is used to write and read to

to this port.

Functions XC4000 Pins uP Data Bus Pins

...

Reset PROG Bar DO

Program Din D1

Read Staus INIT DO

Wait DONE D1

Thus, while programming XC4000, DO must be held high.

void Reset XC4000 ()

{
int i ;

for(i=0;i<4;i++)

{
_asm

{

}
}

mov dx, 0305h

mov al,00h

out dx,al

for(i=0;i<4;i++)

{
_asm

{

// Creates a delay (between 6 and 7 microsecs)

// inline assembly

// PROG Bar Low

// Creates a delay (between 6 and 7 microsecs)

//inline assembly

// PROG Bar High

mov dx, 0305h

mov al,01h

out dx,al

}
}

} // Reset_XC4000

///
int XC4000_Ready ()

{
int INIT In

_asm // inline assembly

{
mov dx, 0305h

mov ah, 00h

in al, dx

and al, 003h // mask off unused bits

mov INIT_In, ax

}

if (INIT In == 0)

{
cout << "INIT is Low" << endl ;

95

cout << "DONE is Low" << endl ;

cout << "There was an error!" << endl ;

return (1) ;

}
else if (INIT In == 1)

cout << "INIT is High" << endl ;

"DONE is Low" << endl ;

"XC4000 is ready to be programmed." << endl ;

(INIT In == 2)

{

cout <<

cout <<

}
else if

{
cout << "INIT is Low" << endl ;

cout << "DONE is High" << endl ;

cout << "There was an error!" << endl ;

return (1) ;

}
else if (INIT In == 3)

{
cout <<

cout <<

cout <<

}
else //

{
cout <<

"INIT is High" << endl ;

"DONE is High" << endl ;

"XC4000 is ready for normal operation and if desired to be reprogrammed." << endl

This should never happen!

"There was an error!" << endl ;

cout << "XC4000 status is : " << INIT In << endl ;

return (1) ;

}

return (0) ;

// XC4000_Ready

///
int Write XC4000 ()

{
FILE *infile_tr ;

int Bit Count = 0 ;

int infTle len ;

char infilename [80] ;

int char in ;

char *f_ptr ;

int Frame_Error, Frame Num ;

int Bits In Frame ; /7 used to prevent sending CRC bits to the xc4000

//Get the input file name from user.

cout << "Enter Xilinx (XC4000 Family) Bitstream File Name (*.rbt) : " ;

cin >> infilename ;

cout << endl ;

infile len = strlen (infilename) ;

f_ptr = &infilename [infile_len - 4] ;

if (_strnicmp (f_tr, ".rbt", 4))

{
cout << "Error: No rbt extention ! !!" << endl ;

return (1) ;

}

//Open input file

if ((infile_tr = fopen (infilename "r")) == NULL)

{
cout << "Cannot open input file: " << infilename << endl ;

return (0) ;

}
cout << "Opened the input file: " << infilename << " to read." << endl

// See notes by the Reset XC4000 function.

Bit Count = 0 ;

Frame Num = 0 ;

Frame Error = 0 ;

Bits In Frame = 0 ;

// Read the input rbt text file and save it in an array of char's.

96

char in = fgetc (infile_ptr) ;

while (feof (infile_ptr) == 0)

{
Bit Count++ ;

Bit_ In Frame++ ;

if (char in == i0) // if LF

{
Frame Error = XC4000_Ready () ;

if (Frame Error) // exit the function

{
fclose (infile_ptr) ;

cout << endl ;

cout << "There was a FRAME ERROR at the frame number " << Frame Num << endl ;

cout << endl ;

cout << "Terminated reading the XC4000 rbt file." << endl ;

cout << endl ;

cout << "Number of characters read: " << Bit Count << endl ;

cout << "Total of " << Frame Num << " frames were written to the XC4000." << endl ;

return (1 ;

}

Frame Num++

Bits In Frame = 0 ;

}
else

if (

{
_a sm

(char) char in == 'i'

mov dx,0305h

mov al,03h

out dx,al //Data High

else

if (

{
_asm

{

(char) char in == '0'

mov dx, O305h

mov al,Olh

out dx,al //Data Low

}

} // if

// Read the next character.

char in = fgetc (infile_ptr)

} 7/ while

fclose (infile_ptr) ;

// Check the status once more

Frame_Error = XC4000_Ready () ;

cout << endl ;

cout << endl ;

cout << "Finished reading the XC4000 rbt file." << endl ;

cout << endl << endl;

cout << "Number of characters read: " << Bit Count << endl ;

cout << "Total of " << Frame Num << " frames were written to the XC4000." << endl ;

return (0) ;

} // Write_XC4000

///
///

97

Appendix C

Pin Assignments and Layouts

Following is the content of file "pa122v.npi" that describes the PALL22VI0 pin assignments:

{XOR_POLARITY_CONTROL FALSE, MAX_XOR_PTERMS 0, POLARITY_CONTROL TRUE, MAX_PTERMS 16, MAX_SYMBOLS

20};

DEVICE

{XOR_POLARITY_CONTROL FALSE, MAX_XOR_PTERMS 0, POLARITY_CONTROL TRUE, MAX_PTERMS 16,

MAX_SYMBOLS 20};

TARGET 'PART NUMBER AMD PALLV22VI0-10PC';

INPUT CLK IN:I;

INPUT DI:2;

INPUT AEN:3;

INPUT ADDRESS 0 :4;

INPUT ADDRESS 1 :5;

INPUT ADDRESS 2 :6;

INPUT ADDRESS 3 :7;

INPUT ADDRESS 4 :8;

INPUT ADDRESS 5 :9;

INPUT ADDRESS 6 :i0;

INPUT ADDRESS 7 :ii;

INPUT ADDRESS 8 :13;

INPUT ADDRESS 9 :14;

DATA_OUT:I5 {XOR_POLARITY_CONTROL FALSE, MAX XOR PTERMS 0, POLARITY_CONTROL TRUE,

MAX PTERMS 16, MAX SYMBOLS 20};

-- CLK OUT:I6 _XOR_POLARITY_CONTROL FALSE, MAX XOR PTERMS 0, POLARITY_CONTROL TRUE,

MAX PTERMS_6, MAX SYMBOLS 20};

-- INPUT FEEDBACK DONE PROG:IT;

DONE_PROG BAR:T8 {XOR_POLARITY_CONTROL FALSE, MAX XOR PTERMS 0, POLARITY_CONTROL TRUE,

MAX PTERMS 16, MAX SYMBOLS 20};

-- RESET OUT:_9 {XOR_POLARITYCONTROL FALSE, MAX XOR PTERMS 0, POLARITY CONTROL TRUE,

MAXPTERMS1< MAXSYMBOLS20};
-- DONE PROG T--RISTATE:20 {XOR_POLARITY_CONTROL FALSE, MAX XOR PTERMS 0, POLARITY_CONTROL

TRUE, MAXPfERMS_6, MAX_SYMBOLS20};
IN--PUT IOWR BAR:21;

INPUT D0:22;

X CLK OUT:23 {XOR_POLARITY_CONTROL FALSE, MAX_XOR_PTERMS 0, POLARITY_CONTROL TRUE,

MAX_PTERMS 16, MAX_SYMBOLS 20};

NO CONNECT 12, 24;

END DEVICE_"

VIRTUAL DFF.mod001111.x, DFF.mod001105.x, BUFTH.mod000054.x, Xdefault_0,

w000622, w000623, w000517, w000428,

w000511, w000618, w000557, BUFTH.mod000054.i,

BUFTH.mod000054.oe, BUFTH.mod000054.RETURN, fGND.mod000962.RETURN, DFF.mod001111.q,

DFF.mod001111.q_bar, DFF.mod001111.d, DFF.mod001111.clk, DFF.mod001105.q,

DFF.mod001105.q_bar, DFF.mod001105.d, DFF.mod001105.clk;

98

Following is the content of file "xc3020.cst" that describes the XC3020 pin assignments:

; Last update: Mahyar 3/28/1996

; Added Chip_Select_Bar

; Last Modified on 4/10/1996

; Last Modified on 5/2/1996

; DIN 4000 is tied to D(0) and PROG 4000 is tied to D(5)

; So, they don't have special pins anymore.

; Last Modified on 6/7/1996

; Added DIRCTION pin 44

place block CCLK 4000 P75;

;place block DIN 4000 P76;

place block PROG 4000 P77;

place block INIT 4000 P78;

place block DONE 4000 P66;

place block CHIP SELECT BAR PlI;

place block RESET BIU P_0;

place block DIRECTION P44;

;place block UP DATA PIN 5 P61;

place block DATA READ BAR PI0;

place block DATA--WRITE BAR P25;

place block BIU FIFO WRITE BAR P68;

place block BIU--FIFO--READ BAR PT0;

place block OUTPUT FIFO HF BAR P52;

place block OUTPUT FIFO EMPTY BAR P45

place block OUTPUT--FIFO--FULL BAR P46;

place block OUTPUT--FIFO--WRITE BAR P47

place block OUTPUT--FIFO--READ BAR P48;

place block OUTPUT--FIFO--RESET BAR P49

place block INPUT FIFO HF BAR P27;

place block INPUT FIFO EMPTY BAR P29;

place block INPUT--FIFO--FULL BAR P35;

place block INPUT--FIFO--WRITE BAR P37;

place block INPUT--FIFO--READ BAR P39;

place block INPUT--FIFO--RESET BAR P40;

place block FIFO DATA IN OUT<7> P67;

place block FIFO DATA IN OUT<6> P65;

place block FIFO DATA IN OUT<5> P63;

place block FIFO DATA IN OUT<4> P62;

place block FIFO DATA IN OUT<3> P60;

place block FIFO DATA IN OUT<2> P59;

place block FIFO DATA IN OUT<l> P58;

place block FIFO DATA IN OUT<0> P56;

place block UP DATA IN OUT<7> PI5;

place block UP DATA IN OUT<6> PI6;

place block UP DATA IN OUT<5> PIT;

place block UP DATA IN OUT<4> PlS;

place block UP DATA IN OUT<3> PIg;

place block UP DATA IN OUT<2> P20;

place block UP DATA IN OUT<l> P21;

place block UP DATA IN OUT<0> P23;

place block IORD BAR P24;

place block IOWR BAR P26;

place block AEN BAR P28;

place block ADDRESS<9> PSI;

place block ADDRESS<8> P82;

place block ADDRESS<7> P83;

place block ADDRESS<6> P84;

place block ADDRESS<5> P2;

place block ADDRESS<4> P3;

place block ADDRESS<3> P4;

place block ADDRESS<2> P5;

place block ADDRESS<l> PS;

place block ADDRESS<0> Pg;

99

;place block DONE PROG BAR P55;

;place block SERIAL PROG IN P72;

;place block CLK IN P74;

;place block RESET P54;

Following is the content of file "xc4000.cst" that describes the XC4000 pin assignments:

Pin assignments for the XC4000

Mahyar 3/25/1996

Changed the format on 4/5/1996

Last Modified on 4/12/1996

#
Last Modified on 5/14/1996

#
place instance CHIP SELECT BAR : AI;

place instance RESET BIU :--A2;

#
#place instance FIFO DATA IN<7> LI;

#place instance FIFO DATA IN<6> L2;

#place instance FIFO DATA IN<5> KI;

#place instance FIFO DATA IN<4> K2;

#place instance FIFO DATA IN<3> K3;

#place instance FIFO DATA IN<2> Jl;

#place instance FIFO DATA IN<l> J2;

#place instance FIFO DATA IN<0> J3;

#
place instance FIFO DATA OUT<7> GI;

place instance FIFO DATA OUT<6> G2;

place instance FIFO DATA OUT<5> G3;

place instance FIFO DATA OUT<4> FI;

place instance FIFO DATA OUT<3> F2;

place instance FIFO DATA OUT<2> El;

place instance FIFO DATA OUT<l> E2;

place instance FIFO DATA OUT<0> E3;

#
place instance INPUT FIFO READ BAR : D3;

#place instance INPUT FIFO HF BAR : RII;

#place instance INPUT FIFO EMPTY BAR : RI0;

#place instance INPUT--FIFO--FULL BAR : Pg;

#
place instance OUTPUT FIFO WRITE BAR : M3;

place instance OUTPUT--FIFO--HF BAR : NI5;

#place instance OUTPUT FIFO EMPTY BAR : NI4;

#place instance OUTPUT--FIFO--FULL BAR : MI4;

#
#
place instance BIT CLOCK IN : B3;

place instance BYTE CLOCK OUT : BI;

#
place instance ADDRESS<2> : TI3;

place instance ADDRESS<l> : RI3;

place instance ADDRESS<0> : PI2;

#
place instance IORD BAR : NI;

#place instance IONR BAR : CI;

#
place

place

place

place

place

place

place

place

#
place

place

#
#place

#place

#place

#
#place

#place

instance FIFO DATA IN OUT<7> : TI6;

instance FIFO DATA IN OUT<6> : TI4;

instance FIFO DATA IN OUT<5> : TI0;

instance FIFO DATA IN OUT<4> : R9;

instance FIFO DATA IN OUT<3> : T8;

instance FIFO DATA IN OUT<2> : P7;

instance FIFO DATA IN OUT<I> : T3;

instance FIFO DATA IN OUT<0> : P4;

instance DATA READ BAR : T9;

instance DATA--WRITE BAR : TII;

instance DONE : RI5;

instance SERIAL PROG IN

instance CCLK : R2;

RI4;

instance BIU DATA IN<7>

instance BIU DATA IN<6>

MI6;

LI6;

100

#place

#place

#place

#Place

#place

#place

#
#place

#place

#place

#place

#place

#Place

#place

#place

#
#place

#place

#place

#place

#place

#place

#place

#place

#place

#Place

#place

#place

#
#place

#place

#
#place

#place

#

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

BIU DATA IN<5> : KI6;

BIU DATA IN<4> : J16;

BIU DATA IN<3> : HI6;

BIU DATA IN<2> : GI6;

BIU DATA IN<l> : FI6;

BIU DATA IN<0> : El6;

EPROM DATA<7> : C5

EPROM DATA<6> : C7

EPROM DATA<5> : B5

EPROM DATA<4> : B6

EPROM DATA<3> : B7

EPROM DATA<2> : A6

EPROM DATA<l> : A7

EPROM DATA<0> : A8

EPROM ADDRESS<II>

EPROM ADDRESS<I0>

EPROM ADDRESS<9>

EPROM ADDRESS<8>

EPROM ADDRESS<7>

EPROM ADDRESS<6>

EPROM ADDRESS<5>

EPROM ADDRESS<4>

EPROM ADDRESS<3>

EPROM ADDRESS<2>

EPROM ADDRESS<l>

EPROM ADDRESS<0>

EPROM READ : AI4;

EPROM WRITE : C15;

C9;

CI0;

C12;

B9;

BI0;

BII;

BI2;

BI3;

A9;

AI0;

All;

AI3;

SERIAL DATA IN : C2;

SERIAL DATA OUT : N2;

101

Appendix D

Schedule and Data Packet Exam

Abbreviations used in the followinq schedule tables:

DT = Delta Time

Tx = Transmit

Rx = Receive

S/D/C = Status or Data or Command

Id = BIU or RMU Id

Schedule for the ideal test case (Content of "ideal-s.txt" file):

]les

DT Tx Rx S/D/C Id

i0 i 0 i 27

5 0 0 0 27

5 1 0 0 27

i 0 1 1 31

6 1 0 0 1

4 0 1 1 31

6 1 0 0 2

4 0 1 1 31

30 1 0 1 1

1 0 1 1 31

5 1 0 1 2

1 0 1 1 3

19 1 0 1 3

1 0 1 1 4

7 1 0 1 4

1 0 1 1 1

2 1 0 1 1

1 0 1 1 2

5 1 0 1 2

1 0 1 1 3

19 1 0 1 1

1 0 1 1 2

5 1 0 1 3

1 0 1 1 4

15 1 1 1 31

Schedule for the fail BIU test case (Content of "fail-biu.txt" file)

DT Tx Rx S/D/C Id

i0 i 0 i 27

5 0 0 0 27

5 1 0 0 27

i 0 1 1 31

4 1 0 0 1

2 0 1 1 31

4 1 0 0 2

2 0 1 1 31

30 1 0 1 1

1 0 1 1 31

5 1 0 1 2

1 0 1 1 3

19 1 0 1 3

1 0 1 1 4

7 1 0 1 4

1 0 1 1 1

2 1 0 1 1

1 0 1 1 2

5 1 0 1 2

1 0 1 1 3

19 1 0 1 1

1 0 1 1 2

5 1 0 1 3

1 0 1 1 4

15 1 1 1 31

102

Appendix E

VHDL Tools

This appendix contains the design flow and procedures necessary to get through the many tools of

VHDL development environment. Specifically, the Cadence tool set consisting of "picdesign",

"picxilinx", "hdldesk", and "Synergy".

This procedure is put together to help new users to get thru Cadence tools and

to speed up the initial learning curve.

Last Modified on: 11-21-95

Cadence Version: 9404

Procedure for using the many files and tools of Cadence development

environment to synthesize and implement a given design in VHDL:

i. run "hdldesk &"

2. compile all codes using hdldesk

3. run "SynrgCheck" from the hdldesk

4. "Synthesize" from hdldesk

5. select the target library; 3000, 4000, or etc.

6. set synthesis option to cost (a must for XC3000),

"yes" for schematic generation, and

select "STD Logic" option

7. Synergy brings up a pop-up window titled "Import VHDL",

select "Verilog Model Import Files" and OK it.

Check for warnings and errors in the log files.

8. quit Synergy

9. edit "xnf out" file and specify the latest run directory used by Synergy,

it is usually in the form of "./yourdesignname_something. syn. run#",

all that is necessary to do is to change the "#" to reflect the latest

run directory

i0. save the file and quit the editor

ii. xnf out

it Fill create a "*.xnf" file with the same name as the design name but,

due to some mysterious reasons, in UPPER case. This file located

in the "xilinx" run directory, specified in the "xnf out" file, MUST

be renamed to lower case.

12. for user pin assignments, edit the file "filename.cst" that

is located in the "xilinx" run directory.

13. picxilinx &

14. "Setup" will bring up a pop-up window titled "Xilinx"

under "GLOBAL OPTIONS" specify all but

leave the "Package File" as "default"

under "NETLIST OPTIONS" select

Import Netlist

Generate Constraints File Template

under "PHYSICAL OPTIONS" select

Verilog Stand Alone

User Pins Only

15. P & R

16. Physical

it generates "*.v" and "*.sdf" files

17. generate VHDL shells for the verilog files just created:

verilog +vhdl crshell filename.v

18. compile the new VHDL file and modify the test bench for post-synthesis

simulation, i.e., simulation with back-annotation results.

19. quit "HDL Desktop"

103

This procedure is put together to help new users to get thru Cadence tools and

to speed up the initial learning curve.

Last Modified on: 10-28-96

Cadence Version: 9502

Mahyar Malekpour

Procedure for using the many files and tools of Cadence development

environment to synthesize and implement a given design in VHDL:

i. Change directory to your working directory.

cd YourWorkDirectory

Note: "YourWorkDirectory" is the directory where your VHDL codes are.

2. Invoke "HDL Desktop" to run Leapfrog and Synergy:

hdldesk &

From within hdldesk:

3. Compile all VHDL codes using hdldesk

4. Select the architecture to be synthesized, this will enable the "Synthesize" button

5. Run "SynrgCheck" from the hdldesk for a quick synthesizability check, or

run "Synthesize" for a full synthesis of your architecture

Note: "SynrgCheck" will operate from within hdldesk, while

"Synthesize" will invoke Synergy.

From within Synergy:

6. Select the target library; 3000, 4000, or etc.

7. Select "Run Synthesizer ...",

it will bring up a pop-up window with the caption bar "Run Synthesizer and Optimizer"

7.1. Select Generate Schematic option, if you desire to see the schematic

Note: the "type" should be set to "Composer"

7.2. Set Constraint Priority to "cost" (a must for XC3000)

7.3. Set Job Priority to "Highest" which is numercial zero

7.4. Select "STD LOGIC", if it is not selected

7.5. "OK" it. The pop-up window will disappear and the synthesis will begin

8. MUST wait for the synthesis to finish.

Note: DO NOT hit any key or buttons until the synthesis is finished.

Depending on the size of your design, it will take from one to a few

minutes for the Synergy to finish synthesizing your code.

Be patient!

9. To view the synthesis results, from the menu bar, select

Show --> Output --> Composer Schematic

It will bring up two the composer related windows

Note: The Composer schematic viewer is VERY PRIMITIVE and with very few functions.

You can zoom in and out, pan left and right, and plot the schematic.

I use it for plotting and visual verification of the synthesis results.

Note: DO NOT attempt to modify and save the modified schematic!

i0. Quit schematic viewer!

ii. Quit Synergy!

From the Unix environment:

12. Edit "xnf out" file and specify the latest run directory used by Synergy,

it is usually in the form of "./Yourmesignmame_momething. syn. run#",

all that is necessary to do is to change the "#" to reflect the latest

run directory

13. Save the file and quit the editor

104

If you don't have a "xnf out" file, then create it.

Here is a sample of a typical xnf out file:

Note you only need to create it once.

xnfout -lib Opt -addio -rundir YourXilinxDirectory -spath

"./YourDesignName_Something.syn.run#

/usr/local/cds-9502/share/library/xilinx/cds /usr/local/cds-9502//tools/dfII/etc/cdslib"

YourDesignNameinCaps

Legend:

YourXilinxDirectory is the directory where the synthesis results will be.

You need to create this directory once and prior to

running xnf out command.

be.

YourDesignName_Something.syn.run# is the directory where all the temporary files will

Synergy creates a new directory after every run.

YourDesignNameinCaps is your design name, i.e., your design entity name,

and not necessarily the file name of your design in

caps (UPPER CASE).

Note: The xnf out must be an executable file. Here is the Unix command to make

this fi_e executable:

chmod 744 xnf out

Note that it has to be done only once and after creating the "xnf out" file.

14. xnf out

It Fill create a "*.xnf" file with the same name as the design name and place it

in the "YourXilinxDirectory" directory, specified in the "xnf out" file.

15. View the "xnfout.log" file for possible errors

16. For user pin assignments,

edit the file "filename.cst" that is located in the "YourXilinxDirectory" directory.

If there is no such file there, then create one.

Note: "*.cst" file format for the Xilinx xc3000 series is as follows

place block Your_I/O Pin Name P#;

Example:

place block ADDRESS<7> P2;

Note: "*.cst" file format for the Xilinx xc4000 series is as follows

place instance Your I/O Pin Name : #;

Example:

place instance ADDRESS<7> : C5;

Note: For further details please see the Xilinx manuals.

There are two ways of generating hex files for programming the Xilinx chips:

a. via the Xilinx front end tool called "picxilinx" or

b. creating a make file and running it at the command line.

Option a, via "picxilinx" and from "YourWorkDirectory":

17. Run Pic-Xilinx program:

picxilinx &

17.1. "Setup" will bring up a pop-up window titled "Xilinx"

under "GLOBAL OPTIONS" specify

"Design Name" to "design-name",

"Work File" to "./file-name.wrk",

"Run Directory" to "YourXilinxDirectory,

"Part Name" to "XC3020PC84" or "4005APGI56" or other Xilinx parts, and

leave the "Package File" as "default"

under "NETLIST OPTIONS" select

"Import Netlist"

"Generate Constraints File Template"

under "PHYSICAL OPTIONS" select

"Verilog Stand Alone"

"User Pins Only"

17.2. Select "P & R"

105

Note: DO NOT hit any key or buttons until it is finished.

Depending on the size of your design, it will take from one to a few

minutes for the Place & Route to finish.

Be patient!

17.3 Select "Physical"

It generates "*.v" and "*.sdf" files that are used in backannotation

and post-synthesis simulations.

17.4 Generate VHDL shells for the verilog files just created:

verilog +vhdl crshell filename.v

17.5 Compile the new VHDL file and modify the test bench for post-synthesis

simulation, i.e., simulation with back-annotation results.

17.6 Quit "HDL Desktop"

Option b, via make files and from your "YourXilinxDirectory" directory:

18. xmake FileName.mak

Note: Depending on the size of your design, it will take from one to a few

minutes for the Place and Route to finish.

Be patient!

Note: You need to create a make file for your design and target chip only

once. This file doesn't need to be modified there after for that design.

Here is a sample make file for programming Xilinx 3000 series:

#
Created by XMAKE Version 5.0.0 on Tue Jan 16 14:48:52 1996

#
The following options were used: -P 3020PC84-I00 -X

#
The following is the hierarchy of the design 'FileName.xnf'

#
DEFAULT TARGET FileName.bit

FileName.bit : FileName.lca

makebits -SO -R2 -XB -YA FileName.lca

FileName.lca : FileName.map

map21ca -P 3020PC84-I00 FileName.map FileName.lca

apt -W -Y FileName.lca FileName.lca -c FileName.cst

FileName.map : FileName.xtf

xnfmap -P 3020PC84-I00 FileName.xtf FileName.map

FileName.xtf : FileName.xff

xnfprep FileName.xff FileName.xtf parttype=3020PC84-100 cstfile=FileName.cst

FileName.xff : ld.xnf FileName.xnf

xnfmerge -A -D xnf -P 3020PC84-I00 FileName.xnf FileName.xff

Here is a sample make file for programming Xilinx 4000 series:

#
Created by XMAKE Version 5.1.0 on Thu Apt 4 13:55:08 1996

#
The following options were used: -P 4005APGI56-5 -X

#
The following is the hierarchy of the design 'FileName.xnf'

#
DEFAULT TARGET FileName.bit

FileName.bit : FileName.lca

makebits FileName.lca

FileName.lca : FileName.cst FileName.xtf

106

ppr FileName.xtf -run_ic2map parttype=4005APG156-5

xdelay -D -W FileName.lca

FileName.xtf : FileName.xff

xnfprep FileName.xff FileName.xtf parttype=4005APG156-5 cstfile=FileName.cst

FileName.xff : id.xnf fdp.xnf FileName.xnf

xnfmerge -A -D xnf -P 4005APGI56-5 FileName.xnf FileName.xff

To program an FPGA via an EPROM, the FPGA bit file needs to be converted

to an EPROM hex file by the following unix command and from your

"YourXilinxDirectory" directory:

19. makeprom -f mcs -u StartAddress FileName.bit

Legend:

StartAddress is the start address of the EPROM where the hex file will

be loaded; typically, i00.

FileName.bit is the FPGA bit file name that is in "YourXilinxDirectory"

directory.

107

Form Approved
REPORT DOCUMENTATION PAGE OMBNo. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing llTstructions, searchll N existing data sources,
gathering and mallTtall#ng the data needed, and completing and reviewll N the collection of llTformation. Send comments regardll N this burden estimate or any other aspect of this
collection of llTformation, includll N suggestions for reducll N this burden, to WashllNton Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), WashllNton, DC 20503.

1. AGENCY USE ONLY (Zeaveblank) 2. REPORT DATE 3. REPORTTYPE AND DATES COVERED

April 2002 Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Fly-By-Light/Power-By-Wire Fault-Tolerant Fiber-Optic Backplane

6. AUTHOR(S)
Mahyar R. Malekpour

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center

Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

WU 728-30-10-03

8. PERFORMING ORGANIZATION

REPORT NUMBER

L-18158

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA/TM-2002-211632

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified Unlimited

Subject Category 60 Distribution: Nonstandard

Availability: NASA CAS1 (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The design and development of a fault-tolerant fiber-optic backplane to demonstrate feasibility of such architecture

is presented. The simulation results of test cases on the backplane in the advent of induced faults are presented, and

the fault recovery capability of the architecture is demonstrated. The architecture was designed, developed, and

implemented using the Very High Speed Integrated Circuits (VHS1C) Hardware Description Language (VHDL).

The architecture was synthesized and implemented in hardware using Field Programmable Gate Arrays (FPGA) on

multiple prototype boards.

14. SUBJECTTERMS

Fly-By-Light/Power-By-Wire

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

117
16. PRICE CODE

20. LIMITATION

OF ABSTRACT

UL

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

